腐殖质堆肥对水介质中镉 (II) 吸附的影响。

IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL
Daniele Cristina Hass Seremeta, Cleber Pinto da Silva, Sandro Xavier de Campos
{"title":"腐殖质堆肥对水介质中镉 (II) 吸附的影响。","authors":"Daniele Cristina Hass Seremeta, Cleber Pinto da Silva, Sandro Xavier de Campos","doi":"10.1080/10934529.2023.2204798","DOIUrl":null,"url":null,"abstract":"<p><p>The humic compost obtained from the treatment of tobacco from smuggled cigarettes (SCT) and industrial sewage sludge (ISS) was evaluated as adsorbent for Cd (II) in aqueous solution, for possible decontamination of water resources. Optimum conditions were found at pH 5 and a 3 g/L adsorbent concentration, which presented 92% Cd (II) removal and maximum adsorption capacity of 28.546 mg/g. The pseudo-second-order kinetic model presented the best fit, pointing 120 min as the time needed to attain a steady state. FTIR and EDX results suggest the formation of coordinated Cd (II) bonds by functional groups between the compost and the solution. The results obtained in real samples showed that, even under different environmental conditions, the Cd (II) adsorption varied between 80.05 and 91.61%. The results indicated that the compost evaluated can be used for remediation of Cd (II)-contaminated water resources.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of humic compost on the adsorption of cadmium (II) in aqueous medium.\",\"authors\":\"Daniele Cristina Hass Seremeta, Cleber Pinto da Silva, Sandro Xavier de Campos\",\"doi\":\"10.1080/10934529.2023.2204798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The humic compost obtained from the treatment of tobacco from smuggled cigarettes (SCT) and industrial sewage sludge (ISS) was evaluated as adsorbent for Cd (II) in aqueous solution, for possible decontamination of water resources. Optimum conditions were found at pH 5 and a 3 g/L adsorbent concentration, which presented 92% Cd (II) removal and maximum adsorption capacity of 28.546 mg/g. The pseudo-second-order kinetic model presented the best fit, pointing 120 min as the time needed to attain a steady state. FTIR and EDX results suggest the formation of coordinated Cd (II) bonds by functional groups between the compost and the solution. The results obtained in real samples showed that, even under different environmental conditions, the Cd (II) adsorption varied between 80.05 and 91.61%. The results indicated that the compost evaluated can be used for remediation of Cd (II)-contaminated water resources.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2204798\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2204798","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

对从处理走私烟烟草(SCT)和工业污水污泥(ISS)中获得的腐殖堆肥作为水溶液中镉(II)的吸附剂进行了评估,以便对水资源进行净化。最佳条件是 pH 值为 5,吸附剂浓度为 3 g/L,镉(II)去除率为 92%,最大吸附容量为 28.546 mg/g。伪二阶动力学模型的拟合效果最好,达到稳定状态所需的时间为 120 分钟。傅立叶变换红外光谱(FTIR)和电离辐射观察(EDX)结果表明,堆肥和溶液之间的官能团形成了配位镉(II)键。实际样品的结果表明,即使在不同的环境条件下,镉(II)的吸附率也在 80.05% 到 91.61% 之间。结果表明,所评估的堆肥可用于修复受镉 (II) 污染的水资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of humic compost on the adsorption of cadmium (II) in aqueous medium.

The humic compost obtained from the treatment of tobacco from smuggled cigarettes (SCT) and industrial sewage sludge (ISS) was evaluated as adsorbent for Cd (II) in aqueous solution, for possible decontamination of water resources. Optimum conditions were found at pH 5 and a 3 g/L adsorbent concentration, which presented 92% Cd (II) removal and maximum adsorption capacity of 28.546 mg/g. The pseudo-second-order kinetic model presented the best fit, pointing 120 min as the time needed to attain a steady state. FTIR and EDX results suggest the formation of coordinated Cd (II) bonds by functional groups between the compost and the solution. The results obtained in real samples showed that, even under different environmental conditions, the Cd (II) adsorption varied between 80.05 and 91.61%. The results indicated that the compost evaluated can be used for remediation of Cd (II)-contaminated water resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信