黄瓜根中分离的黄瓜农杆菌

IF 3.3 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Michał Warabieda , Nemanja Kuzmanović , Paweł Trzciński , Joanna Puławska
{"title":"黄瓜根中分离的黄瓜农杆菌","authors":"Michał Warabieda ,&nbsp;Nemanja Kuzmanović ,&nbsp;Paweł Trzciński ,&nbsp;Joanna Puławska","doi":"10.1016/j.syapm.2023.126402","DOIUrl":null,"url":null,"abstract":"<div><p>Three plant rhizogenic strains O132<sup>T</sup>, O115 and O34 isolated from <span><em>Cucumis</em></span> sp. <em>L.</em><span> were assessed for taxonomic affiliation by using polyphasic taxonomic methods. Based on the results of the sequence analysis<span> of the 16S rRNA and multilocus sequence analysis<span> (MLSA) of the three housekeeping genes </span></span></span><em>atpD</em>, <em>recA</em> and <em>rpoB,</em> all the strains were clustered within the genus <span><em>Agrobacterium</em></span> where they form a novel branch. Their closest relative was <em>Agrobacterium tomkonis</em> (genomospecies G3)<em>.</em> Moreover, digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) comparisons between strains O132<sup>T</sup><span> and O34 and their closest relatives provided evidence that they constitute a new species, because the obtained values were significantly below the threshold considered as a borderline for the species delineation. Whole-genome phylogenomic<span> analysis also indicated that the cucumber strains are located within the separate, well-delineated biovar 1 sub-clade of the genus </span></span><em>Agrobacterium</em>. Furthermore, the physiological and biochemical properties of these strains allowed to distinguish them from their closest related species of the genus <em>Agrobacterium</em>. As a result of the performed overall characterization, we propose a new species as <em>Agrobacterium cucumeris</em> sp. nov., with O132<sup>T</sup> (=CFBP 8997<sup>T</sup> = LMG 32451<sup>T</sup>) as the type strain.</p></div>","PeriodicalId":22124,"journal":{"name":"Systematic and applied microbiology","volume":"46 2","pages":"Article 126402"},"PeriodicalIF":3.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Agrobacterium cucumeris sp. nov. isolated from crazy roots on cucumber (Cucumis sativus)\",\"authors\":\"Michał Warabieda ,&nbsp;Nemanja Kuzmanović ,&nbsp;Paweł Trzciński ,&nbsp;Joanna Puławska\",\"doi\":\"10.1016/j.syapm.2023.126402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three plant rhizogenic strains O132<sup>T</sup>, O115 and O34 isolated from <span><em>Cucumis</em></span> sp. <em>L.</em><span> were assessed for taxonomic affiliation by using polyphasic taxonomic methods. Based on the results of the sequence analysis<span> of the 16S rRNA and multilocus sequence analysis<span> (MLSA) of the three housekeeping genes </span></span></span><em>atpD</em>, <em>recA</em> and <em>rpoB,</em> all the strains were clustered within the genus <span><em>Agrobacterium</em></span> where they form a novel branch. Their closest relative was <em>Agrobacterium tomkonis</em> (genomospecies G3)<em>.</em> Moreover, digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) comparisons between strains O132<sup>T</sup><span> and O34 and their closest relatives provided evidence that they constitute a new species, because the obtained values were significantly below the threshold considered as a borderline for the species delineation. Whole-genome phylogenomic<span> analysis also indicated that the cucumber strains are located within the separate, well-delineated biovar 1 sub-clade of the genus </span></span><em>Agrobacterium</em>. Furthermore, the physiological and biochemical properties of these strains allowed to distinguish them from their closest related species of the genus <em>Agrobacterium</em>. As a result of the performed overall characterization, we propose a new species as <em>Agrobacterium cucumeris</em> sp. nov., with O132<sup>T</sup> (=CFBP 8997<sup>T</sup> = LMG 32451<sup>T</sup>) as the type strain.</p></div>\",\"PeriodicalId\":22124,\"journal\":{\"name\":\"Systematic and applied microbiology\",\"volume\":\"46 2\",\"pages\":\"Article 126402\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic and applied microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723202023000115\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202023000115","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

采用多相分类方法,对从黄瓜中分离得到的3株植物发根菌株O132T、O115和O34进行了分类隶属度评价。根据16S rRNA的序列分析和atpD、recA和rpoB三个持家基因的多点序列分析(MLSA)结果,所有菌株都聚集在农杆菌属中,在那里它们形成了一个新的分支。它们的近亲是通孔农杆菌(基因组G3)。此外,O132T和O34菌株及其近亲之间的数字DNA-DNA杂交(dDDH)和平均核苷酸同一性(ANI)比较提供了它们构成新物种的证据,因为所获得的值明显低于被认为是物种划分边界的阈值。全基因组系统发育分析还表明,黄瓜菌株位于农杆菌属的独立、清晰的生物变异1亚支中。此外,这些菌株的生理和生化特性使它们能够与最接近的农杆菌属物种区分开来。作为所进行的整体表征的结果,我们提出了一个新的物种,即农杆菌cucumeris sp.nov.,以O132T(=CFBP 8997T=LMG 32451T)为类型菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Agrobacterium cucumeris sp. nov. isolated from crazy roots on cucumber (Cucumis sativus)

Three plant rhizogenic strains O132T, O115 and O34 isolated from Cucumis sp. L. were assessed for taxonomic affiliation by using polyphasic taxonomic methods. Based on the results of the sequence analysis of the 16S rRNA and multilocus sequence analysis (MLSA) of the three housekeeping genes atpD, recA and rpoB, all the strains were clustered within the genus Agrobacterium where they form a novel branch. Their closest relative was Agrobacterium tomkonis (genomospecies G3). Moreover, digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) comparisons between strains O132T and O34 and their closest relatives provided evidence that they constitute a new species, because the obtained values were significantly below the threshold considered as a borderline for the species delineation. Whole-genome phylogenomic analysis also indicated that the cucumber strains are located within the separate, well-delineated biovar 1 sub-clade of the genus Agrobacterium. Furthermore, the physiological and biochemical properties of these strains allowed to distinguish them from their closest related species of the genus Agrobacterium. As a result of the performed overall characterization, we propose a new species as Agrobacterium cucumeris sp. nov., with O132T (=CFBP 8997T = LMG 32451T) as the type strain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systematic and applied microbiology
Systematic and applied microbiology 生物-生物工程与应用微生物
CiteScore
7.50
自引率
5.90%
发文量
57
审稿时长
22 days
期刊介绍: Systematic and Applied Microbiology deals with various aspects of microbial diversity and systematics of prokaryotes. It focuses on Bacteria and Archaea; eukaryotic microorganisms will only be considered in rare cases. The journal perceives a broad understanding of microbial diversity and encourages the submission of manuscripts from the following branches of microbiology:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信