Joachim Starup-Hansen, Simon C Williams, Jonathan P Funnell, John G Hanrahan, Shah Islam, Alaa Al-Mohammad, Ciaran S Hill
{"title":"利用人工智能优化立体定向脑肿瘤活检的轨迹规划:对文献的系统回顾。","authors":"Joachim Starup-Hansen, Simon C Williams, Jonathan P Funnell, John G Hanrahan, Shah Islam, Alaa Al-Mohammad, Ciaran S Hill","doi":"10.1080/02688697.2023.2210225","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Despite advances in technology, stereotactic brain tumour biopsy remains challenging due to the risk of injury to critical structures. Indeed, choosing the correct trajectory remains essential to patient safety. Artificial intelligence can be used to perform automated trajectory planning. We present a systematic review of automated trajectory planning algorithms for stereotactic brain tumour biopsies.</p><p><strong>Methods: </strong>A PRISMA adherent systematic review was conducted. Databases were searched using keyword combinations of 'artificial intelligence', 'trajectory planning' and 'brain tumours'. Studies reporting applications of artificial intelligence (AI) to trajectory planning for brain tumour biopsy were included.</p><p><strong>Results: </strong>All eight studies were in the earliest stage of the IDEAL-D development framework. Trajectory plans were compared through a variety of surrogate markers of safety, of which the minimum distance to blood vessels was the most common. Five studies compared manual to automated planning strategies and favoured automation in all cases. However, this comes with a significant risk of bias.</p><p><strong>Conclusions: </strong>This systematic review reveals the need for IDEAL-D Stage 1 research into automated trajectory planning for brain tumour biopsy. Future studies should establish the congruence between expected risk of algorithms and the ground truth through comparisons to real world outcomes.</p>","PeriodicalId":9261,"journal":{"name":"British Journal of Neurosurgery","volume":" ","pages":"163-172"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising trajectory planning for stereotactic brain tumour biopsy using artificial intelligence: a systematic review of the literature.\",\"authors\":\"Joachim Starup-Hansen, Simon C Williams, Jonathan P Funnell, John G Hanrahan, Shah Islam, Alaa Al-Mohammad, Ciaran S Hill\",\"doi\":\"10.1080/02688697.2023.2210225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Despite advances in technology, stereotactic brain tumour biopsy remains challenging due to the risk of injury to critical structures. Indeed, choosing the correct trajectory remains essential to patient safety. Artificial intelligence can be used to perform automated trajectory planning. We present a systematic review of automated trajectory planning algorithms for stereotactic brain tumour biopsies.</p><p><strong>Methods: </strong>A PRISMA adherent systematic review was conducted. Databases were searched using keyword combinations of 'artificial intelligence', 'trajectory planning' and 'brain tumours'. Studies reporting applications of artificial intelligence (AI) to trajectory planning for brain tumour biopsy were included.</p><p><strong>Results: </strong>All eight studies were in the earliest stage of the IDEAL-D development framework. Trajectory plans were compared through a variety of surrogate markers of safety, of which the minimum distance to blood vessels was the most common. Five studies compared manual to automated planning strategies and favoured automation in all cases. However, this comes with a significant risk of bias.</p><p><strong>Conclusions: </strong>This systematic review reveals the need for IDEAL-D Stage 1 research into automated trajectory planning for brain tumour biopsy. Future studies should establish the congruence between expected risk of algorithms and the ground truth through comparisons to real world outcomes.</p>\",\"PeriodicalId\":9261,\"journal\":{\"name\":\"British Journal of Neurosurgery\",\"volume\":\" \",\"pages\":\"163-172\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02688697.2023.2210225\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02688697.2023.2210225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Optimising trajectory planning for stereotactic brain tumour biopsy using artificial intelligence: a systematic review of the literature.
Purpose: Despite advances in technology, stereotactic brain tumour biopsy remains challenging due to the risk of injury to critical structures. Indeed, choosing the correct trajectory remains essential to patient safety. Artificial intelligence can be used to perform automated trajectory planning. We present a systematic review of automated trajectory planning algorithms for stereotactic brain tumour biopsies.
Methods: A PRISMA adherent systematic review was conducted. Databases were searched using keyword combinations of 'artificial intelligence', 'trajectory planning' and 'brain tumours'. Studies reporting applications of artificial intelligence (AI) to trajectory planning for brain tumour biopsy were included.
Results: All eight studies were in the earliest stage of the IDEAL-D development framework. Trajectory plans were compared through a variety of surrogate markers of safety, of which the minimum distance to blood vessels was the most common. Five studies compared manual to automated planning strategies and favoured automation in all cases. However, this comes with a significant risk of bias.
Conclusions: This systematic review reveals the need for IDEAL-D Stage 1 research into automated trajectory planning for brain tumour biopsy. Future studies should establish the congruence between expected risk of algorithms and the ground truth through comparisons to real world outcomes.
期刊介绍:
The British Journal of Neurosurgery is a leading international forum for debate in the field of neurosurgery, publishing original peer-reviewed articles of the highest quality, along with comment and correspondence on all topics of current interest to neurosurgeons worldwide.
Coverage includes all aspects of case assessment and surgical practice, as well as wide-ranging research, with an emphasis on clinical rather than experimental material. Special emphasis is placed on postgraduate education with review articles on basic neurosciences and on the theory behind advances in techniques, investigation and clinical management. All papers are submitted to rigorous and independent peer-review, ensuring the journal’s wide citation and its appearance in the major abstracting and indexing services.