Jakob Assländer, Andrew Mao, Elisa Marchetto, Erin S Beck, Francesco La Rosa, Robert W Charlson, Timothy M Shepherd, Sebastian Flassbeck
{"title":"关于脑组织中的多路径纵向自旋弛豫。","authors":"Jakob Assländer, Andrew Mao, Elisa Marchetto, Erin S Beck, Francesco La Rosa, Robert W Charlson, Timothy M Shepherd, Sebastian Flassbeck","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Since the inception of magnetization transfer (MT) imaging, it has been widely assumed that Henkelman's two spin pools have similar longitudinal relaxation times, which motivated many researchers to constrain them to each other. However, several recent publications reported a <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math> of the <i>semi-solid spin pool</i> that is much shorter than <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> of the <i>free pool</i>. While these studies tailored experiments for robust proofs-of-concept, we here aim to quantify the disentangled relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e., with an effective resolution of 1.24mm isotropic and full brain coverage in 12min. To this end, we optimized a <i>hybrid-state</i> pulse sequence for mapping the parameters of an unconstrained MT model. We scanned four people with relapsing-remitting multiple sclerosis (MS) and four healthy controls with this pulse sequence and estimated <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup><mo>≈</mo><mn>1.84</mn><mi>s</mi></math> and <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≈</mo><mn>0.34</mn><mi>s</mi></math> in healthy white matter. Our results confirm the reports that <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≪</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> and we argue that this finding identifies MT as an inherent driver of longitudinal relaxation in brain tissue. Moreover, we estimated a fractional size of the semi-solid spin pool of <math><msubsup><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≈</mo><mn>0.212</mn></math>, which is larger than previously assumed. An analysis of <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> in normal-appearing white matter revealed statistically significant differences between individuals with MS and controls.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882584/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unconstrained quantitative magnetization transfer imaging: disentangling <i>T</i><sub>1</sub> of the free and semi-solid spin pools.\",\"authors\":\"Jakob Assländer, Andrew Mao, Elisa Marchetto, Erin S Beck, Francesco La Rosa, Robert W Charlson, Timothy M Shepherd, Sebastian Flassbeck\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the inception of magnetization transfer (MT) imaging, it has been widely assumed that Henkelman's two spin pools have similar longitudinal relaxation times, which motivated many researchers to constrain them to each other. However, several recent publications reported a <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math> of the <i>semi-solid spin pool</i> that is much shorter than <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> of the <i>free pool</i>. While these studies tailored experiments for robust proofs-of-concept, we here aim to quantify the disentangled relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e., with an effective resolution of 1.24mm isotropic and full brain coverage in 12min. To this end, we optimized a <i>hybrid-state</i> pulse sequence for mapping the parameters of an unconstrained MT model. We scanned four people with relapsing-remitting multiple sclerosis (MS) and four healthy controls with this pulse sequence and estimated <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup><mo>≈</mo><mn>1.84</mn><mi>s</mi></math> and <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≈</mo><mn>0.34</mn><mi>s</mi></math> in healthy white matter. Our results confirm the reports that <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≪</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> and we argue that this finding identifies MT as an inherent driver of longitudinal relaxation in brain tissue. Moreover, we estimated a fractional size of the semi-solid spin pool of <math><msubsup><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>≈</mo><mn>0.212</mn></math>, which is larger than previously assumed. An analysis of <math><msubsup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>f</mi></mrow></msubsup></math> in normal-appearing white matter revealed statistically significant differences between individuals with MS and controls.</p>\",\"PeriodicalId\":8425,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unconstrained quantitative magnetization transfer imaging: disentangling T1 of the free and semi-solid spin pools.
Since the inception of magnetization transfer (MT) imaging, it has been widely assumed that Henkelman's two spin pools have similar longitudinal relaxation times, which motivated many researchers to constrain them to each other. However, several recent publications reported a of the semi-solid spin pool that is much shorter than of the free pool. While these studies tailored experiments for robust proofs-of-concept, we here aim to quantify the disentangled relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e., with an effective resolution of 1.24mm isotropic and full brain coverage in 12min. To this end, we optimized a hybrid-state pulse sequence for mapping the parameters of an unconstrained MT model. We scanned four people with relapsing-remitting multiple sclerosis (MS) and four healthy controls with this pulse sequence and estimated and in healthy white matter. Our results confirm the reports that and we argue that this finding identifies MT as an inherent driver of longitudinal relaxation in brain tissue. Moreover, we estimated a fractional size of the semi-solid spin pool of , which is larger than previously assumed. An analysis of in normal-appearing white matter revealed statistically significant differences between individuals with MS and controls.