跨王国搭便车:真菌、动物和植物细胞中 Cargos 的共转运。

IF 11.4 1区 生物学 Q1 CELL BIOLOGY
Jenna R Christensen, Samara L Reck-Peterson
{"title":"跨王国搭便车:真菌、动物和植物细胞中 Cargos 的共转运。","authors":"Jenna R Christensen, Samara L Reck-Peterson","doi":"10.1146/annurev-cellbio-120420-104341","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"155-178"},"PeriodicalIF":11.4000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells.\",\"authors\":\"Jenna R Christensen, Samara L Reck-Peterson\",\"doi\":\"10.1146/annurev-cellbio-120420-104341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.</p>\",\"PeriodicalId\":7944,\"journal\":{\"name\":\"Annual review of cell and developmental biology\",\"volume\":\"38 \",\"pages\":\"155-178\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of cell and developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cellbio-120420-104341\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-120420-104341","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生命树上的真核细胞通过胞内运输机制组织其亚细胞成分。在典型运输中,肌球蛋白、驱动蛋白和动力蛋白通过适配蛋白与载体相互作用,并沿着丝状肌动蛋白或微管轨道移动。与这种典型模式不同,搭便车是一种新发现的细胞内运输模式,在这种模式下,货物会附着在已经运动的货物上,而不是直接与运动蛋白本身结合。包括信使核糖核酸、蛋白质复合物和细胞器在内的许多货物都会搭膜上货物的便车。事实证明,类似搭便车的行为会影响细胞过程,包括本地蛋白质翻译、远距离信号传递和细胞器网络重组。在这里,我们回顾了真菌、动物和植物细胞中货物搭便车的实例,并讨论了在这些不同情况下搭便车对细胞和进化的潜在重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells.

Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信