{"title":"抗坏血酸系缚聚合纳米颗粒对利瓦斯汀脑运输的体内研究。","authors":"Kavita R Gajbhiye, Vandana Soni","doi":"10.2174/1567201819666220516093425","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The goal of this study was to see if ascorbic acid grafted polylactic glycolic acid-b-polyethylene glycol nanoparticles (PLGA-b-PEG NPs) might boost the carrying or transport capacity of rivastigmine(RSM) to the brain via choroid plexus Sodium-dependent vitamin C transporter 2 (SVCT2 transporters). The IR and 1H NMR, were used to characterise the PLGA-b-PEG copolymer.</p><p><strong>Methods: </strong>Nanoprecipitation method was used to make PLGA-b-PEG NPs. To promote SVCT2- mediated transportation of ascorbic acid (Asc) into the brain, PLGA-b-PEG NPs of acceptable size, polydispersity, and drug loading were bound with ascorbic acid (PLGA-b-PEG-Asc). When compared to PLGA-b-mPEG NPs, the surface functionalization of NPs with ascorbic acid dramatically improved the cellular uptake of NPs in SVCT2 expressing NIH/3T3 cells. Radial Arm Maze Test, and Acetylcholinesterase (AChE) activity in scopolamine-induced amnetic rats were used to assess in vivo pharmacodynamic effectiveness.</p><p><strong>Results: </strong>In vivo pharmacodynamic tests revealed that drug loaded PLGA-b-PEG-Asc NPs had much greater therapeutic and sustained activity than free drugs, and PLGA-b-mPEG NPs to the brain.</p><p><strong>Conclusion: </strong>As a consequence, the findings revealed that using ascorbic acid grafted PLGA-b-PEG NPs to deliver bioactives to the brain is a potential strategy.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"20 7","pages":"961-977"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An <i>In vivo</i> Investigation of Ascorbic Acid Tethered Polymeric Nanoparticles for Effectual Brain Transport of Rivastigmine.\",\"authors\":\"Kavita R Gajbhiye, Vandana Soni\",\"doi\":\"10.2174/1567201819666220516093425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The goal of this study was to see if ascorbic acid grafted polylactic glycolic acid-b-polyethylene glycol nanoparticles (PLGA-b-PEG NPs) might boost the carrying or transport capacity of rivastigmine(RSM) to the brain via choroid plexus Sodium-dependent vitamin C transporter 2 (SVCT2 transporters). The IR and 1H NMR, were used to characterise the PLGA-b-PEG copolymer.</p><p><strong>Methods: </strong>Nanoprecipitation method was used to make PLGA-b-PEG NPs. To promote SVCT2- mediated transportation of ascorbic acid (Asc) into the brain, PLGA-b-PEG NPs of acceptable size, polydispersity, and drug loading were bound with ascorbic acid (PLGA-b-PEG-Asc). When compared to PLGA-b-mPEG NPs, the surface functionalization of NPs with ascorbic acid dramatically improved the cellular uptake of NPs in SVCT2 expressing NIH/3T3 cells. Radial Arm Maze Test, and Acetylcholinesterase (AChE) activity in scopolamine-induced amnetic rats were used to assess in vivo pharmacodynamic effectiveness.</p><p><strong>Results: </strong>In vivo pharmacodynamic tests revealed that drug loaded PLGA-b-PEG-Asc NPs had much greater therapeutic and sustained activity than free drugs, and PLGA-b-mPEG NPs to the brain.</p><p><strong>Conclusion: </strong>As a consequence, the findings revealed that using ascorbic acid grafted PLGA-b-PEG NPs to deliver bioactives to the brain is a potential strategy.</p>\",\"PeriodicalId\":10842,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\"20 7\",\"pages\":\"961-977\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567201819666220516093425\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201819666220516093425","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
An In vivo Investigation of Ascorbic Acid Tethered Polymeric Nanoparticles for Effectual Brain Transport of Rivastigmine.
Introduction: The goal of this study was to see if ascorbic acid grafted polylactic glycolic acid-b-polyethylene glycol nanoparticles (PLGA-b-PEG NPs) might boost the carrying or transport capacity of rivastigmine(RSM) to the brain via choroid plexus Sodium-dependent vitamin C transporter 2 (SVCT2 transporters). The IR and 1H NMR, were used to characterise the PLGA-b-PEG copolymer.
Methods: Nanoprecipitation method was used to make PLGA-b-PEG NPs. To promote SVCT2- mediated transportation of ascorbic acid (Asc) into the brain, PLGA-b-PEG NPs of acceptable size, polydispersity, and drug loading were bound with ascorbic acid (PLGA-b-PEG-Asc). When compared to PLGA-b-mPEG NPs, the surface functionalization of NPs with ascorbic acid dramatically improved the cellular uptake of NPs in SVCT2 expressing NIH/3T3 cells. Radial Arm Maze Test, and Acetylcholinesterase (AChE) activity in scopolamine-induced amnetic rats were used to assess in vivo pharmacodynamic effectiveness.
Results: In vivo pharmacodynamic tests revealed that drug loaded PLGA-b-PEG-Asc NPs had much greater therapeutic and sustained activity than free drugs, and PLGA-b-mPEG NPs to the brain.
Conclusion: As a consequence, the findings revealed that using ascorbic acid grafted PLGA-b-PEG NPs to deliver bioactives to the brain is a potential strategy.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.