Lixia He, Chuguo Zhang, Baofeng Zhang, Ou Yang, Wei Yuan, Linglin Zhou, Zhihao Zhao, Zhiyi Wu, Jie Wang* and Zhong Lin Wang,
{"title":"用于风能收集和自供电风速监测的双模摩擦电纳米发电机","authors":"Lixia He, Chuguo Zhang, Baofeng Zhang, Ou Yang, Wei Yuan, Linglin Zhou, Zhihao Zhao, Zhiyi Wu, Jie Wang* and Zhong Lin Wang, ","doi":"10.1021/acsnano.1c11658","DOIUrl":null,"url":null,"abstract":"<p >The triboelectric nanogenerator shows a broad application potential in wind energy collection and wind speed sensing. However, it is difficult to realize wind energy collection and real-time wind speed monitoring in one simple device without external power support. Here, a high-performance dual-mode triboelectric nanogenerator is proposed to simultaneously collect wind energy efficiently and monitor wind speed in real time, which is composed by an alternating current triboelectric nanogenerator (AC-TENG) and a direct-current triboelectric nanogenerator (DC-TENG). Based on the material optimization, the charge density of the AC-TENG improves by a factor of 1 compared with previous works. Moreover, benefiting from the elastic structure and material optimization to realize a low friction force, the AC-TENG shows an excellent durability and obtains a retention of 87% electric output after 1?200?000 operation cycles. Meanwhile, thanks to the high charge density and low friction force, the energy-harvesting efficiency of the AC-TENG is doubled. In addition, the DC-TENG not only displays an excellent real-time sensing performance but also can provide gale warning. Our finding exhibits a strategy for efficiently collecting wind energy and achieving fully self-powered and real-time wind speed monitoring.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"16 4","pages":"6244–6254"},"PeriodicalIF":16.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring\",\"authors\":\"Lixia He, Chuguo Zhang, Baofeng Zhang, Ou Yang, Wei Yuan, Linglin Zhou, Zhihao Zhao, Zhiyi Wu, Jie Wang* and Zhong Lin Wang, \",\"doi\":\"10.1021/acsnano.1c11658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The triboelectric nanogenerator shows a broad application potential in wind energy collection and wind speed sensing. However, it is difficult to realize wind energy collection and real-time wind speed monitoring in one simple device without external power support. Here, a high-performance dual-mode triboelectric nanogenerator is proposed to simultaneously collect wind energy efficiently and monitor wind speed in real time, which is composed by an alternating current triboelectric nanogenerator (AC-TENG) and a direct-current triboelectric nanogenerator (DC-TENG). Based on the material optimization, the charge density of the AC-TENG improves by a factor of 1 compared with previous works. Moreover, benefiting from the elastic structure and material optimization to realize a low friction force, the AC-TENG shows an excellent durability and obtains a retention of 87% electric output after 1?200?000 operation cycles. Meanwhile, thanks to the high charge density and low friction force, the energy-harvesting efficiency of the AC-TENG is doubled. In addition, the DC-TENG not only displays an excellent real-time sensing performance but also can provide gale warning. Our finding exhibits a strategy for efficiently collecting wind energy and achieving fully self-powered and real-time wind speed monitoring.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"16 4\",\"pages\":\"6244–6254\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.1c11658\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.1c11658","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring
The triboelectric nanogenerator shows a broad application potential in wind energy collection and wind speed sensing. However, it is difficult to realize wind energy collection and real-time wind speed monitoring in one simple device without external power support. Here, a high-performance dual-mode triboelectric nanogenerator is proposed to simultaneously collect wind energy efficiently and monitor wind speed in real time, which is composed by an alternating current triboelectric nanogenerator (AC-TENG) and a direct-current triboelectric nanogenerator (DC-TENG). Based on the material optimization, the charge density of the AC-TENG improves by a factor of 1 compared with previous works. Moreover, benefiting from the elastic structure and material optimization to realize a low friction force, the AC-TENG shows an excellent durability and obtains a retention of 87% electric output after 1?200?000 operation cycles. Meanwhile, thanks to the high charge density and low friction force, the energy-harvesting efficiency of the AC-TENG is doubled. In addition, the DC-TENG not only displays an excellent real-time sensing performance but also can provide gale warning. Our finding exhibits a strategy for efficiently collecting wind energy and achieving fully self-powered and real-time wind speed monitoring.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.