基于热力学模型预测温度和pH参数对纳米脂质体系统大小和稳定性的影响。

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Liposome Research Pub Date : 2023-12-01 Epub Date: 2023-05-12 DOI:10.1080/08982104.2023.2203250
Fardin Rahimi, Pari Hajizadeh, Ghassem Amoabediny, Bahman Ebrahimi, Mansoor Khaledi, Fatemeh Sameni, Hamed Afkhami, Shahriar Bakhti, Elham Rafiee Taqanaki, Mahdi Zafari
{"title":"基于热力学模型预测温度和pH参数对纳米脂质体系统大小和稳定性的影响。","authors":"Fardin Rahimi, Pari Hajizadeh, Ghassem Amoabediny, Bahman Ebrahimi, Mansoor Khaledi, Fatemeh Sameni, Hamed Afkhami, Shahriar Bakhti, Elham Rafiee Taqanaki, Mahdi Zafari","doi":"10.1080/08982104.2023.2203250","DOIUrl":null,"url":null,"abstract":"<p><p>The main challenge of using nanoliposome systems is controlling their size and stability. In order to overcome this challenge, according to the research conducted at the Research Centre for New Technologies of Biological Engineering, University of Tehran, a model for predicting the size and stability of nanoliposome systems based on thermodynamic relations has been presented. In this model, by using the presented equations and without performing many experiments in the laboratory environment, the effect of temperature, ionic power and different pH can be considered simultaneously whereas examining the components of size, stability and any feature were considered before. Synthesis and application of liposomal nanocarriers in different operating conditions can be investigated and predicted, and due to the change in temperature and pH, the smallest size of th system can be obtained. In this study, we were able to model the synthesis and storage conditions of liposomal nanocarriers at different temperatures and acidic, neutral and alkaline pHs, based on the calculation of mathematical equations. This model also indicates that with increasing temperature, the radius increases but with increasing pH, the radius first increases and then decreases. Therefore, this model can be used to predict size and stability in different operating conditions. In fact, with this modelling method, there is no need to study through laboratory methods and analysis to determine the size, stability and surface loads, and in terms of Accuracy, time and cost savings are affordable.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prognosticating the effect of temperature and pH parameters on size and stability of the nanoliposome system based on thermodynamic modeling.\",\"authors\":\"Fardin Rahimi, Pari Hajizadeh, Ghassem Amoabediny, Bahman Ebrahimi, Mansoor Khaledi, Fatemeh Sameni, Hamed Afkhami, Shahriar Bakhti, Elham Rafiee Taqanaki, Mahdi Zafari\",\"doi\":\"10.1080/08982104.2023.2203250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main challenge of using nanoliposome systems is controlling their size and stability. In order to overcome this challenge, according to the research conducted at the Research Centre for New Technologies of Biological Engineering, University of Tehran, a model for predicting the size and stability of nanoliposome systems based on thermodynamic relations has been presented. In this model, by using the presented equations and without performing many experiments in the laboratory environment, the effect of temperature, ionic power and different pH can be considered simultaneously whereas examining the components of size, stability and any feature were considered before. Synthesis and application of liposomal nanocarriers in different operating conditions can be investigated and predicted, and due to the change in temperature and pH, the smallest size of th system can be obtained. In this study, we were able to model the synthesis and storage conditions of liposomal nanocarriers at different temperatures and acidic, neutral and alkaline pHs, based on the calculation of mathematical equations. This model also indicates that with increasing temperature, the radius increases but with increasing pH, the radius first increases and then decreases. Therefore, this model can be used to predict size and stability in different operating conditions. In fact, with this modelling method, there is no need to study through laboratory methods and analysis to determine the size, stability and surface loads, and in terms of Accuracy, time and cost savings are affordable.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2023.2203250\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2023.2203250","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

使用纳米脂质体系统的主要挑战是控制它们的大小和稳定性。为了克服这一挑战,根据德黑兰大学生物工程新技术研究中心的研究,提出了一种基于热力学关系预测纳米脂质体系统大小和稳定性的模型。在该模型中,通过使用所提出的方程,无需在实验室环境中进行大量实验,可以同时考虑温度,离子功率和不同pH值的影响,而之前考虑了尺寸,稳定性和任何特征的组成部分。可以对不同操作条件下脂质体纳米载体的合成及应用进行研究和预测,并且由于温度和pH的变化,可以得到最小的体系尺寸。在本研究中,我们通过数学方程的计算,模拟了脂质体纳米载体在不同温度、酸性、中性和碱性ph值下的合成和储存条件。该模型还表明,随着温度的升高,半径增大,但随着pH的增加,半径先增大后减小。因此,该模型可用于预测不同工况下的尺寸和稳定性。事实上,使用这种建模方法,不需要通过实验室方法和分析来确定尺寸、稳定性和表面载荷,并且在准确性、时间和成本节约方面都是负担得起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prognosticating the effect of temperature and pH parameters on size and stability of the nanoliposome system based on thermodynamic modeling.

The main challenge of using nanoliposome systems is controlling their size and stability. In order to overcome this challenge, according to the research conducted at the Research Centre for New Technologies of Biological Engineering, University of Tehran, a model for predicting the size and stability of nanoliposome systems based on thermodynamic relations has been presented. In this model, by using the presented equations and without performing many experiments in the laboratory environment, the effect of temperature, ionic power and different pH can be considered simultaneously whereas examining the components of size, stability and any feature were considered before. Synthesis and application of liposomal nanocarriers in different operating conditions can be investigated and predicted, and due to the change in temperature and pH, the smallest size of th system can be obtained. In this study, we were able to model the synthesis and storage conditions of liposomal nanocarriers at different temperatures and acidic, neutral and alkaline pHs, based on the calculation of mathematical equations. This model also indicates that with increasing temperature, the radius increases but with increasing pH, the radius first increases and then decreases. Therefore, this model can be used to predict size and stability in different operating conditions. In fact, with this modelling method, there is no need to study through laboratory methods and analysis to determine the size, stability and surface loads, and in terms of Accuracy, time and cost savings are affordable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信