Arisa Kawamukai, Ayana Iwano, Momoka Shibata, Yuko Kishi, Akira Matsuura
{"title":"在酿酒酵母中,丝氨酸代谢通过调节细胞外pH值和提供能量来源来促进细胞存活。","authors":"Arisa Kawamukai, Ayana Iwano, Momoka Shibata, Yuko Kishi, Akira Matsuura","doi":"10.1002/yea.3840","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in extracellular pH affect the homeostasis and survival of unicellular organisms. Supplementation of culture media with amino acids can extend the lifespan of budding yeast, Saccharomyces cerevisiae, by alleviating the decrease in pH. However, the optimal amino acids to use to achieve this end, and the underlying mechanisms involved, remain unclear. Here, we describe the specific role of serine metabolism in the regulation of pH in a medium. The addition of serine to synthetic minimal medium suppressed acidification, and at higher doses increased the pH. CHA1, which encodes a catabolic serine hydratase that degrades serine into ammonium and pyruvate, is essential for serine-mediated alleviation of acidification. Moreover, serine metabolism supports extra growth after glucose depletion. Therefore, medium supplementation with serine can play a prominent role in the batch culture of budding yeast, controlling extracellular pH through catabolism into ammonium and acting as an energy source after glucose exhaustion.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"40 2","pages":"59-67"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Serine metabolism contributes to cell survival by regulating extracellular pH and providing an energy source in Saccharomyces cerevisiae.\",\"authors\":\"Arisa Kawamukai, Ayana Iwano, Momoka Shibata, Yuko Kishi, Akira Matsuura\",\"doi\":\"10.1002/yea.3840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Changes in extracellular pH affect the homeostasis and survival of unicellular organisms. Supplementation of culture media with amino acids can extend the lifespan of budding yeast, Saccharomyces cerevisiae, by alleviating the decrease in pH. However, the optimal amino acids to use to achieve this end, and the underlying mechanisms involved, remain unclear. Here, we describe the specific role of serine metabolism in the regulation of pH in a medium. The addition of serine to synthetic minimal medium suppressed acidification, and at higher doses increased the pH. CHA1, which encodes a catabolic serine hydratase that degrades serine into ammonium and pyruvate, is essential for serine-mediated alleviation of acidification. Moreover, serine metabolism supports extra growth after glucose depletion. Therefore, medium supplementation with serine can play a prominent role in the batch culture of budding yeast, controlling extracellular pH through catabolism into ammonium and acting as an energy source after glucose exhaustion.</p>\",\"PeriodicalId\":23870,\"journal\":{\"name\":\"Yeast\",\"volume\":\"40 2\",\"pages\":\"59-67\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yeast\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/yea.3840\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3840","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Serine metabolism contributes to cell survival by regulating extracellular pH and providing an energy source in Saccharomyces cerevisiae.
Changes in extracellular pH affect the homeostasis and survival of unicellular organisms. Supplementation of culture media with amino acids can extend the lifespan of budding yeast, Saccharomyces cerevisiae, by alleviating the decrease in pH. However, the optimal amino acids to use to achieve this end, and the underlying mechanisms involved, remain unclear. Here, we describe the specific role of serine metabolism in the regulation of pH in a medium. The addition of serine to synthetic minimal medium suppressed acidification, and at higher doses increased the pH. CHA1, which encodes a catabolic serine hydratase that degrades serine into ammonium and pyruvate, is essential for serine-mediated alleviation of acidification. Moreover, serine metabolism supports extra growth after glucose depletion. Therefore, medium supplementation with serine can play a prominent role in the batch culture of budding yeast, controlling extracellular pH through catabolism into ammonium and acting as an energy source after glucose exhaustion.
期刊介绍:
Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology.
Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources