Li Sun, Wei-Xing Lu, Hui Li, Ding-Ya Feng, Jing-Xiao Nie
{"title":"楤木总皂苷(Miq.)似乎。通过PI3K/Akt信号通路促进nlrp3炎性体失活,减轻心肌缺血再灌注损伤。","authors":"Li Sun, Wei-Xing Lu, Hui Li, Ding-Ya Feng, Jing-Xiao Nie","doi":"10.1002/kjm2.12627","DOIUrl":null,"url":null,"abstract":"<p><p>Total saponins of Aralia elata (Miq.) Seem. (TSAE) have been shown to play a significant role in cardiovascular protection, anti-tumor, liver protection, anti-oxidant stress, and anti-inflammation. However, the specific mechanisms of TSAE in myocardial ischemia-reperfusion injury (MIRI) remain largely elusive. Hearts from male Wistar rats were used to establish the isolated heart MIRI model. Using a multichannel physiological recorder, the whole course heart rate (HR), left ventricular development pressure (LVDP), and maximum rise/decrease rate of left ventricular pressure (±dp/dt<sub>max</sub> ) were recorded. 2,3,5-triphenyl-2H-tetrazolium chloride staining observed the infarct area, while hematoxylin & eosin staining detected pathological changes in myocardial tissue. Creatine kinase, lactate dehydrogenase, total superoxide dismutase, and malondialdehyde concentrations were determined by enzyme-linked immunosorbent assay. Immunohistochemistry, quantitative PCR, and western blot assay were used to assess the amounts of IL-18 and IL-1β, NLR family protein (NLRP3) inflammasome- and apoptosis-related proteins, respectively. Treatment with TSAE or MCC950 (NLRP3-specific inhibitor) significantly reduced the myocardial infarction area, alleviated pathological changes in myocardial tissues, enhanced LVDP and ±dp/dt<sub>max</sub> levels, prevented myocardial oxidative damage, and inhibited NLRP3 inflammasome formation. In addition, TSAE enhanced Akt and GSK3β phosphorylation, and LY29004 co-reperfusion markedly diminished the protective role of TSAE reperfusion on cardiac function, oxidative damage, and inflammatory responses. Collectively, TSAE treatment exhibited a protective effect on I/R-triggered inflammatory responses, cell necrosis, and oxidative stress injury by stimulating PI3K/Akt signaling-mediated NLRP3 inflammasome inhibition.</p>","PeriodicalId":49946,"journal":{"name":"Kaohsiung Journal of Medical Sciences","volume":"39 3","pages":"290-301"},"PeriodicalIF":2.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Total saponins of Aralia elata (Miq.) Seem. alleviate myocardial ischemia-reperfusion injury by promoting NLRP3-inflammasome inactivation via PI3K/Akt signaling.\",\"authors\":\"Li Sun, Wei-Xing Lu, Hui Li, Ding-Ya Feng, Jing-Xiao Nie\",\"doi\":\"10.1002/kjm2.12627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Total saponins of Aralia elata (Miq.) Seem. (TSAE) have been shown to play a significant role in cardiovascular protection, anti-tumor, liver protection, anti-oxidant stress, and anti-inflammation. However, the specific mechanisms of TSAE in myocardial ischemia-reperfusion injury (MIRI) remain largely elusive. Hearts from male Wistar rats were used to establish the isolated heart MIRI model. Using a multichannel physiological recorder, the whole course heart rate (HR), left ventricular development pressure (LVDP), and maximum rise/decrease rate of left ventricular pressure (±dp/dt<sub>max</sub> ) were recorded. 2,3,5-triphenyl-2H-tetrazolium chloride staining observed the infarct area, while hematoxylin & eosin staining detected pathological changes in myocardial tissue. Creatine kinase, lactate dehydrogenase, total superoxide dismutase, and malondialdehyde concentrations were determined by enzyme-linked immunosorbent assay. Immunohistochemistry, quantitative PCR, and western blot assay were used to assess the amounts of IL-18 and IL-1β, NLR family protein (NLRP3) inflammasome- and apoptosis-related proteins, respectively. Treatment with TSAE or MCC950 (NLRP3-specific inhibitor) significantly reduced the myocardial infarction area, alleviated pathological changes in myocardial tissues, enhanced LVDP and ±dp/dt<sub>max</sub> levels, prevented myocardial oxidative damage, and inhibited NLRP3 inflammasome formation. In addition, TSAE enhanced Akt and GSK3β phosphorylation, and LY29004 co-reperfusion markedly diminished the protective role of TSAE reperfusion on cardiac function, oxidative damage, and inflammatory responses. Collectively, TSAE treatment exhibited a protective effect on I/R-triggered inflammatory responses, cell necrosis, and oxidative stress injury by stimulating PI3K/Akt signaling-mediated NLRP3 inflammasome inhibition.</p>\",\"PeriodicalId\":49946,\"journal\":{\"name\":\"Kaohsiung Journal of Medical Sciences\",\"volume\":\"39 3\",\"pages\":\"290-301\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kaohsiung Journal of Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/kjm2.12627\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kaohsiung Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/kjm2.12627","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Total saponins of Aralia elata (Miq.) Seem. alleviate myocardial ischemia-reperfusion injury by promoting NLRP3-inflammasome inactivation via PI3K/Akt signaling.
Total saponins of Aralia elata (Miq.) Seem. (TSAE) have been shown to play a significant role in cardiovascular protection, anti-tumor, liver protection, anti-oxidant stress, and anti-inflammation. However, the specific mechanisms of TSAE in myocardial ischemia-reperfusion injury (MIRI) remain largely elusive. Hearts from male Wistar rats were used to establish the isolated heart MIRI model. Using a multichannel physiological recorder, the whole course heart rate (HR), left ventricular development pressure (LVDP), and maximum rise/decrease rate of left ventricular pressure (±dp/dtmax ) were recorded. 2,3,5-triphenyl-2H-tetrazolium chloride staining observed the infarct area, while hematoxylin & eosin staining detected pathological changes in myocardial tissue. Creatine kinase, lactate dehydrogenase, total superoxide dismutase, and malondialdehyde concentrations were determined by enzyme-linked immunosorbent assay. Immunohistochemistry, quantitative PCR, and western blot assay were used to assess the amounts of IL-18 and IL-1β, NLR family protein (NLRP3) inflammasome- and apoptosis-related proteins, respectively. Treatment with TSAE or MCC950 (NLRP3-specific inhibitor) significantly reduced the myocardial infarction area, alleviated pathological changes in myocardial tissues, enhanced LVDP and ±dp/dtmax levels, prevented myocardial oxidative damage, and inhibited NLRP3 inflammasome formation. In addition, TSAE enhanced Akt and GSK3β phosphorylation, and LY29004 co-reperfusion markedly diminished the protective role of TSAE reperfusion on cardiac function, oxidative damage, and inflammatory responses. Collectively, TSAE treatment exhibited a protective effect on I/R-triggered inflammatory responses, cell necrosis, and oxidative stress injury by stimulating PI3K/Akt signaling-mediated NLRP3 inflammasome inhibition.
期刊介绍:
Kaohsiung Journal of Medical Sciences (KJMS), is the official peer-reviewed open access publication of Kaohsiung Medical University, Taiwan. The journal was launched in 1985 to promote clinical and scientific research in the medical sciences in Taiwan, and to disseminate this research to the international community. It is published monthly by Wiley. KJMS aims to publish original research and review papers in all fields of medicine and related disciplines that are of topical interest to the medical profession. Authors are welcome to submit Perspectives, reviews, original articles, short communications, Correspondence and letters to the editor for consideration.