Elizabeth R. Belden, Matthew Rando, Owen G. Ferrara, Eric T. Himebaugh, Christopher A. Skangos, Nikolaos K. Kazantzis, Randy C. Paffenroth and Michael T. Timko*,
{"title":"塑料热解产油率的机器学习预测及其在热力学分析中的应用","authors":"Elizabeth R. Belden, Matthew Rando, Owen G. Ferrara, Eric T. Himebaugh, Christopher A. Skangos, Nikolaos K. Kazantzis, Randy C. Paffenroth and Michael T. Timko*, ","doi":"10.1021/acsengineeringau.2c00038","DOIUrl":null,"url":null,"abstract":"<p >Chemical recycling via thermal processes such as pyrolysis is a potentially viable way to convert mixed streams of waste plastics into usable fuels and chemicals. Unfortunately, experimentally measuring product yields for real waste streams can be time- and cost-prohibitive, and the yields are very sensitive to feed composition, especially for certain types of plastics like poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC). Models capable of predicting yields and conversion from feed composition and reaction conditions have potential as tools to prioritize resources to the most promising plastic streams and to evaluate potential preseparation strategies to improve yields. In this study, a data set consisting of 325 data points for pyrolysis of plastic feeds was collected from the open literature. The data set was divided into training and test sub data sets; the training data were used to optimize the seven different machine learning regression methods, and the testing data were used to evaluate the accuracy of the resulting models. Of the seven types of models, eXtreme Gradient Boosting (XGBoost) predicted the oil yield of the test set with the highest accuracy, corresponding to a mean absolute error (MAE) value of 9.1%. The optimized XGBoost model was then used to predict the oil yields from real waste compositions found in Municipal Recycling Facilities (MRFs) and the Rhine River. The dependence of oil yields on composition was evaluated, and strategies for removing PET and PVC were assessed as examples of how to use the model. Thermodynamic analysis of a pyrolysis system capable of achieving oil yields predicted using the machine-learned model showed that pyrolysis of Rhine River plastics should be net exergy producing under most reasonable conditions.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/91/0e/eg2c00038.PMC10119934.pdf","citationCount":"3","resultStr":"{\"title\":\"Machine Learning Predictions of Oil Yields Obtained by Plastic Pyrolysis and Application to Thermodynamic Analysis\",\"authors\":\"Elizabeth R. Belden, Matthew Rando, Owen G. Ferrara, Eric T. Himebaugh, Christopher A. Skangos, Nikolaos K. Kazantzis, Randy C. Paffenroth and Michael T. Timko*, \",\"doi\":\"10.1021/acsengineeringau.2c00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chemical recycling via thermal processes such as pyrolysis is a potentially viable way to convert mixed streams of waste plastics into usable fuels and chemicals. Unfortunately, experimentally measuring product yields for real waste streams can be time- and cost-prohibitive, and the yields are very sensitive to feed composition, especially for certain types of plastics like poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC). Models capable of predicting yields and conversion from feed composition and reaction conditions have potential as tools to prioritize resources to the most promising plastic streams and to evaluate potential preseparation strategies to improve yields. In this study, a data set consisting of 325 data points for pyrolysis of plastic feeds was collected from the open literature. The data set was divided into training and test sub data sets; the training data were used to optimize the seven different machine learning regression methods, and the testing data were used to evaluate the accuracy of the resulting models. Of the seven types of models, eXtreme Gradient Boosting (XGBoost) predicted the oil yield of the test set with the highest accuracy, corresponding to a mean absolute error (MAE) value of 9.1%. The optimized XGBoost model was then used to predict the oil yields from real waste compositions found in Municipal Recycling Facilities (MRFs) and the Rhine River. The dependence of oil yields on composition was evaluated, and strategies for removing PET and PVC were assessed as examples of how to use the model. Thermodynamic analysis of a pyrolysis system capable of achieving oil yields predicted using the machine-learned model showed that pyrolysis of Rhine River plastics should be net exergy producing under most reasonable conditions.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/91/0e/eg2c00038.PMC10119934.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Machine Learning Predictions of Oil Yields Obtained by Plastic Pyrolysis and Application to Thermodynamic Analysis
Chemical recycling via thermal processes such as pyrolysis is a potentially viable way to convert mixed streams of waste plastics into usable fuels and chemicals. Unfortunately, experimentally measuring product yields for real waste streams can be time- and cost-prohibitive, and the yields are very sensitive to feed composition, especially for certain types of plastics like poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC). Models capable of predicting yields and conversion from feed composition and reaction conditions have potential as tools to prioritize resources to the most promising plastic streams and to evaluate potential preseparation strategies to improve yields. In this study, a data set consisting of 325 data points for pyrolysis of plastic feeds was collected from the open literature. The data set was divided into training and test sub data sets; the training data were used to optimize the seven different machine learning regression methods, and the testing data were used to evaluate the accuracy of the resulting models. Of the seven types of models, eXtreme Gradient Boosting (XGBoost) predicted the oil yield of the test set with the highest accuracy, corresponding to a mean absolute error (MAE) value of 9.1%. The optimized XGBoost model was then used to predict the oil yields from real waste compositions found in Municipal Recycling Facilities (MRFs) and the Rhine River. The dependence of oil yields on composition was evaluated, and strategies for removing PET and PVC were assessed as examples of how to use the model. Thermodynamic analysis of a pyrolysis system capable of achieving oil yields predicted using the machine-learned model showed that pyrolysis of Rhine River plastics should be net exergy producing under most reasonable conditions.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)