{"title":"日本活化磷脂酰肌醇3-激酶- δ综合征临床实践指南。","authors":"Kunihiko Moriya, Kanako Mitsui-Sekinaka, Yujin Sekinaka, Akifumi Endo, Hirokazu Kanegane, Tomohiro Morio, Kohsuke Imai, Shigeaki Nonoyama","doi":"10.1080/25785826.2023.2210366","DOIUrl":null,"url":null,"abstract":"<p><p>Activated phosphatidyl inositol 3-kinase-delta syndrome (APDS) due to gain-of-function variant in the class IA PI3K catalytic subunit p110δ (responsible gene: PIK3CD) was described in 2013. The disease is characterized by recurrent airway infections and bronchiectasis. It is associated with hyper-IgM syndrome due to the defect of immunoglobulin class switch recombination and decreased CD27-positive memory B cells. Patients also suffered from immune dysregulations, such as lymphadenopathy, autoimmune cytopenia or enteropathy. T-cell dysfunction due to increased senescence is associated with a decrease in CD4-positive T lymphocytes and CD45RA-positive naive T lymphocytes, along with increased susceptibility to Epstein-Barr virus/cytomegalovirus infections. In 2014, loss-of-function (LOF) mutation of p85α (responsible gene: PIK3R1), a regulatory subunit of p110δ, was identified as a causative gene, followed in 2016 by the identification of the LOF mutation of PTEN, which dephosphorylates PIP3, leading to the differentiation of APDS1 (PIK3CD-GOF), APDS2 (PIK3R1-LOF) and APDS-L (PTEN-LOF). Since the pathophysiology of patients with APDS varies with a wide range of severity, it is crucial that patients receive appropriate treatment and management. Our research group created a disease outline and a diagnostic flow chart and summarized clinical information such as the severity classification of APDS and treatment options.</p>","PeriodicalId":37286,"journal":{"name":"Immunological Medicine","volume":" ","pages":"153-157"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clinical practice guideline for activated phosphatidyl inositol 3-kinase-delta syndrome in Japan.\",\"authors\":\"Kunihiko Moriya, Kanako Mitsui-Sekinaka, Yujin Sekinaka, Akifumi Endo, Hirokazu Kanegane, Tomohiro Morio, Kohsuke Imai, Shigeaki Nonoyama\",\"doi\":\"10.1080/25785826.2023.2210366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Activated phosphatidyl inositol 3-kinase-delta syndrome (APDS) due to gain-of-function variant in the class IA PI3K catalytic subunit p110δ (responsible gene: PIK3CD) was described in 2013. The disease is characterized by recurrent airway infections and bronchiectasis. It is associated with hyper-IgM syndrome due to the defect of immunoglobulin class switch recombination and decreased CD27-positive memory B cells. Patients also suffered from immune dysregulations, such as lymphadenopathy, autoimmune cytopenia or enteropathy. T-cell dysfunction due to increased senescence is associated with a decrease in CD4-positive T lymphocytes and CD45RA-positive naive T lymphocytes, along with increased susceptibility to Epstein-Barr virus/cytomegalovirus infections. In 2014, loss-of-function (LOF) mutation of p85α (responsible gene: PIK3R1), a regulatory subunit of p110δ, was identified as a causative gene, followed in 2016 by the identification of the LOF mutation of PTEN, which dephosphorylates PIP3, leading to the differentiation of APDS1 (PIK3CD-GOF), APDS2 (PIK3R1-LOF) and APDS-L (PTEN-LOF). Since the pathophysiology of patients with APDS varies with a wide range of severity, it is crucial that patients receive appropriate treatment and management. Our research group created a disease outline and a diagnostic flow chart and summarized clinical information such as the severity classification of APDS and treatment options.</p>\",\"PeriodicalId\":37286,\"journal\":{\"name\":\"Immunological Medicine\",\"volume\":\" \",\"pages\":\"153-157\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunological Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25785826.2023.2210366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25785826.2023.2210366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Clinical practice guideline for activated phosphatidyl inositol 3-kinase-delta syndrome in Japan.
Activated phosphatidyl inositol 3-kinase-delta syndrome (APDS) due to gain-of-function variant in the class IA PI3K catalytic subunit p110δ (responsible gene: PIK3CD) was described in 2013. The disease is characterized by recurrent airway infections and bronchiectasis. It is associated with hyper-IgM syndrome due to the defect of immunoglobulin class switch recombination and decreased CD27-positive memory B cells. Patients also suffered from immune dysregulations, such as lymphadenopathy, autoimmune cytopenia or enteropathy. T-cell dysfunction due to increased senescence is associated with a decrease in CD4-positive T lymphocytes and CD45RA-positive naive T lymphocytes, along with increased susceptibility to Epstein-Barr virus/cytomegalovirus infections. In 2014, loss-of-function (LOF) mutation of p85α (responsible gene: PIK3R1), a regulatory subunit of p110δ, was identified as a causative gene, followed in 2016 by the identification of the LOF mutation of PTEN, which dephosphorylates PIP3, leading to the differentiation of APDS1 (PIK3CD-GOF), APDS2 (PIK3R1-LOF) and APDS-L (PTEN-LOF). Since the pathophysiology of patients with APDS varies with a wide range of severity, it is crucial that patients receive appropriate treatment and management. Our research group created a disease outline and a diagnostic flow chart and summarized clinical information such as the severity classification of APDS and treatment options.