{"title":"软机器人的运动学建模:能量最小化方法和99线MATLAB实现。","authors":"Xiaohui Pei, Guimin Chen","doi":"10.1089/soro.2022.0070","DOIUrl":null,"url":null,"abstract":"<p><p>Soft robots have received a great deal of attention from both academia and industry due to their unprecedented adaptability in unstructured environment and extreme dexterity for complicated operations. Due to the strong coupling between the material nonlinearity due to hyperelasticity and the geometric nonlinearity due to large deflections, modeling of soft robots is highly dependent on commercial finite element software packages. An approach that is accurate and fast, and whose implementation is open to designers, is in great need. Considering that the constitutive relation of the hyperelastic materials is commonly expressed by its energy density function, we present an energy-based kinetostatic modeling approach in which the deflection of a soft robot is formulated as a minimization problem of its total potential energy. A fixed Hessian matrix of strain energy is proposed and adopted in the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which significantly improves its efficiency for solving the minimization problem of soft robots without sacrificing prediction accuracy. The simplicity of the approach leads to an implementation of MATLAB with only 99-line codes, which provides an easy-to-use tool for designers who are designing and optimizing the structures of soft robots. The efficiency of the proposed approach for predicting kinetostatic behaviors of soft robots is demonstrated by seven pneumatic-driven and cable-driven soft robots. The capability of the approach for capturing buckling behaviors in soft robots is also demonstrated. The energy-minimization approach, as well as the MATLAB implementation, could be easily tailored to fulfill various tasks, including design, optimization, and control of soft robots.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"972-987"},"PeriodicalIF":6.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetostatic Modeling of Soft Robots: Energy-Minimization Approach and 99-Line MATLAB Implementation.\",\"authors\":\"Xiaohui Pei, Guimin Chen\",\"doi\":\"10.1089/soro.2022.0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soft robots have received a great deal of attention from both academia and industry due to their unprecedented adaptability in unstructured environment and extreme dexterity for complicated operations. Due to the strong coupling between the material nonlinearity due to hyperelasticity and the geometric nonlinearity due to large deflections, modeling of soft robots is highly dependent on commercial finite element software packages. An approach that is accurate and fast, and whose implementation is open to designers, is in great need. Considering that the constitutive relation of the hyperelastic materials is commonly expressed by its energy density function, we present an energy-based kinetostatic modeling approach in which the deflection of a soft robot is formulated as a minimization problem of its total potential energy. A fixed Hessian matrix of strain energy is proposed and adopted in the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which significantly improves its efficiency for solving the minimization problem of soft robots without sacrificing prediction accuracy. The simplicity of the approach leads to an implementation of MATLAB with only 99-line codes, which provides an easy-to-use tool for designers who are designing and optimizing the structures of soft robots. The efficiency of the proposed approach for predicting kinetostatic behaviors of soft robots is demonstrated by seven pneumatic-driven and cable-driven soft robots. The capability of the approach for capturing buckling behaviors in soft robots is also demonstrated. The energy-minimization approach, as well as the MATLAB implementation, could be easily tailored to fulfill various tasks, including design, optimization, and control of soft robots.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\" \",\"pages\":\"972-987\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0070\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0070","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Kinetostatic Modeling of Soft Robots: Energy-Minimization Approach and 99-Line MATLAB Implementation.
Soft robots have received a great deal of attention from both academia and industry due to their unprecedented adaptability in unstructured environment and extreme dexterity for complicated operations. Due to the strong coupling between the material nonlinearity due to hyperelasticity and the geometric nonlinearity due to large deflections, modeling of soft robots is highly dependent on commercial finite element software packages. An approach that is accurate and fast, and whose implementation is open to designers, is in great need. Considering that the constitutive relation of the hyperelastic materials is commonly expressed by its energy density function, we present an energy-based kinetostatic modeling approach in which the deflection of a soft robot is formulated as a minimization problem of its total potential energy. A fixed Hessian matrix of strain energy is proposed and adopted in the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which significantly improves its efficiency for solving the minimization problem of soft robots without sacrificing prediction accuracy. The simplicity of the approach leads to an implementation of MATLAB with only 99-line codes, which provides an easy-to-use tool for designers who are designing and optimizing the structures of soft robots. The efficiency of the proposed approach for predicting kinetostatic behaviors of soft robots is demonstrated by seven pneumatic-driven and cable-driven soft robots. The capability of the approach for capturing buckling behaviors in soft robots is also demonstrated. The energy-minimization approach, as well as the MATLAB implementation, could be easily tailored to fulfill various tasks, including design, optimization, and control of soft robots.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.