铜绿假单胞菌形成功能性淀粉样蛋白FapC的生物膜全长和纤原前单体形式的溶液态核磁共振分配和二级结构倾向。

IF 0.8 4区 生物学 Q4 BIOPHYSICS
Chang-Hyeock Byeon, Pang C. Wang, In-Ja L. Byeon, Ümit Akbey
{"title":"铜绿假单胞菌形成功能性淀粉样蛋白FapC的生物膜全长和纤原前单体形式的溶液态核磁共振分配和二级结构倾向。","authors":"Chang-Hyeock Byeon,&nbsp;Pang C. Wang,&nbsp;In-Ja L. Byeon,&nbsp;Ümit Akbey","doi":"10.1007/s12104-023-10135-5","DOIUrl":null,"url":null,"abstract":"<div><p>Functional bacterial amyloids provide structural scaffolding to bacterial biofilms. In contrast to the pathological amyloids, they have a role in vivo and are tightly regulated. Their presence is essential to the integrity of the bacterial communities surviving in biofilms and may cause serious health complications. Targeting amyloids in biofilms could be a novel approach to prevent chronic infections. However, structural information is very scarce on them in both soluble monomeric and insoluble fibrillar forms, hindering our molecular understanding and strategies to fight biofilm related diseases. Here, we present solution-state NMR assignment of 250 amino acid long biofilm-forming functional-amyloid FapC from <i>Pseudomonas aeruginosa</i>. We studied full-length (FL) and shorter minimalistic-truncated (L2R3C) FapC constructs without the signal-sequence that is required for secretion. 91% and 100% backbone NH resonance assignments for FL and L2R3C constructs, respectively, indicate that soluble monomeric FapC is predominantly disordered, with sizeable secondary structural propensities mostly as PP2 helices, but also as α-helices and β-sheets highlighting hotspots for fibrillation initiation interface. A shorter construct showing almost identical NMR chemical shifts highlights the promise of utilizing it for more demanding solid-state NMR studies that require methods to alleviate signal redundancy due to almost identical repeat units. This study provides key NMR resonance assignments for future structural studies of soluble, pre-fibrillar and fibrillar forms of FapC.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"159 - 165"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Solution-state NMR assignment and secondary structure propensity of the full length and minimalistic-truncated prefibrillar monomeric form of biofilm forming functional amyloid FapC from Pseudomonas aeruginosa\",\"authors\":\"Chang-Hyeock Byeon,&nbsp;Pang C. Wang,&nbsp;In-Ja L. Byeon,&nbsp;Ümit Akbey\",\"doi\":\"10.1007/s12104-023-10135-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Functional bacterial amyloids provide structural scaffolding to bacterial biofilms. In contrast to the pathological amyloids, they have a role in vivo and are tightly regulated. Their presence is essential to the integrity of the bacterial communities surviving in biofilms and may cause serious health complications. Targeting amyloids in biofilms could be a novel approach to prevent chronic infections. However, structural information is very scarce on them in both soluble monomeric and insoluble fibrillar forms, hindering our molecular understanding and strategies to fight biofilm related diseases. Here, we present solution-state NMR assignment of 250 amino acid long biofilm-forming functional-amyloid FapC from <i>Pseudomonas aeruginosa</i>. We studied full-length (FL) and shorter minimalistic-truncated (L2R3C) FapC constructs without the signal-sequence that is required for secretion. 91% and 100% backbone NH resonance assignments for FL and L2R3C constructs, respectively, indicate that soluble monomeric FapC is predominantly disordered, with sizeable secondary structural propensities mostly as PP2 helices, but also as α-helices and β-sheets highlighting hotspots for fibrillation initiation interface. A shorter construct showing almost identical NMR chemical shifts highlights the promise of utilizing it for more demanding solid-state NMR studies that require methods to alleviate signal redundancy due to almost identical repeat units. This study provides key NMR resonance assignments for future structural studies of soluble, pre-fibrillar and fibrillar forms of FapC.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"17 2\",\"pages\":\"159 - 165\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-023-10135-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-023-10135-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 4

摘要

功能性细菌淀粉样蛋白为细菌生物膜提供结构支架。与病理性淀粉样蛋白相反,它们在体内发挥作用,并受到严格调控。它们的存在对生物膜中存活的细菌群落的完整性至关重要,并可能导致严重的健康并发症。靶向生物膜中的淀粉样蛋白可能是预防慢性感染的一种新方法。然而,无论是可溶性单体形式还是不溶性原纤维形式,它们的结构信息都非常匮乏,阻碍了我们对分子的理解和对抗生物膜相关疾病的策略。在这里,我们提出了来自铜绿假单胞菌的250个氨基酸长的生物膜形成功能性淀粉样蛋白FapC的溶液状态NMR分配。我们研究了没有分泌所需信号序列的全长(FL)和较短的最小截断(L2R3C)FapC构建体。FL和L2R3C构建体的91%和100%的主链NH共振分配分别表明,可溶性单体FapC主要是无序的,具有相当大的二级结构倾向,主要是PP2螺旋,也有突出纤颤起始界面热点的α-螺旋和β-片。显示几乎相同NMR化学位移的较短构建体突出了将其用于要求更高的固态NMR研究的前景,这些研究需要缓解由于几乎相同的重复单元而导致的信号冗余的方法。这项研究为FapC的可溶性、原纤维前和原纤维形式的未来结构研究提供了关键的NMR共振分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solution-state NMR assignment and secondary structure propensity of the full length and minimalistic-truncated prefibrillar monomeric form of biofilm forming functional amyloid FapC from Pseudomonas aeruginosa

Solution-state NMR assignment and secondary structure propensity of the full length and minimalistic-truncated prefibrillar monomeric form of biofilm forming functional amyloid FapC from Pseudomonas aeruginosa

Functional bacterial amyloids provide structural scaffolding to bacterial biofilms. In contrast to the pathological amyloids, they have a role in vivo and are tightly regulated. Their presence is essential to the integrity of the bacterial communities surviving in biofilms and may cause serious health complications. Targeting amyloids in biofilms could be a novel approach to prevent chronic infections. However, structural information is very scarce on them in both soluble monomeric and insoluble fibrillar forms, hindering our molecular understanding and strategies to fight biofilm related diseases. Here, we present solution-state NMR assignment of 250 amino acid long biofilm-forming functional-amyloid FapC from Pseudomonas aeruginosa. We studied full-length (FL) and shorter minimalistic-truncated (L2R3C) FapC constructs without the signal-sequence that is required for secretion. 91% and 100% backbone NH resonance assignments for FL and L2R3C constructs, respectively, indicate that soluble monomeric FapC is predominantly disordered, with sizeable secondary structural propensities mostly as PP2 helices, but also as α-helices and β-sheets highlighting hotspots for fibrillation initiation interface. A shorter construct showing almost identical NMR chemical shifts highlights the promise of utilizing it for more demanding solid-state NMR studies that require methods to alleviate signal redundancy due to almost identical repeat units. This study provides key NMR resonance assignments for future structural studies of soluble, pre-fibrillar and fibrillar forms of FapC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信