Ebtesam A Mohamad, Marwa A Ramadan, Marwa M Mostafa, Mona S Elneklawi
{"title":"通过极低频电场(ELF-EF)增强氧化铁和银纳米颗粒对金黄色葡萄球菌的抗菌作用。","authors":"Ebtesam A Mohamad, Marwa A Ramadan, Marwa M Mostafa, Mona S Elneklawi","doi":"10.1080/15368378.2023.2208610","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of <i>Staphylococcus aureus</i> using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of <i>Staphylococcus aureus</i> were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of <i>Staphylococcus aureus</i> bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against <i>S. aureus</i>.\",\"authors\":\"Ebtesam A Mohamad, Marwa A Ramadan, Marwa M Mostafa, Mona S Elneklawi\",\"doi\":\"10.1080/15368378.2023.2208610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Staphylococcus aureus</i> is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of <i>Staphylococcus aureus</i> using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of <i>Staphylococcus aureus</i> were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of <i>Staphylococcus aureus</i> bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2023.2208610\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2023.2208610","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus.
Staphylococcus aureus is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of Staphylococcus aureus using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of Staphylococcus aureus were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of Staphylococcus aureus bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.