通过极低频电场(ELF-EF)增强氧化铁和银纳米颗粒对金黄色葡萄球菌的抗菌作用。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2023-07-03 Epub Date: 2023-05-08 DOI:10.1080/15368378.2023.2208610
Ebtesam A Mohamad, Marwa A Ramadan, Marwa M Mostafa, Mona S Elneklawi
{"title":"通过极低频电场(ELF-EF)增强氧化铁和银纳米颗粒对金黄色葡萄球菌的抗菌作用。","authors":"Ebtesam A Mohamad,&nbsp;Marwa A Ramadan,&nbsp;Marwa M Mostafa,&nbsp;Mona S Elneklawi","doi":"10.1080/15368378.2023.2208610","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of <i>Staphylococcus aureus</i> using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of <i>Staphylococcus aureus</i> were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of <i>Staphylococcus aureus</i> bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against <i>S. aureus</i>.\",\"authors\":\"Ebtesam A Mohamad,&nbsp;Marwa A Ramadan,&nbsp;Marwa M Mostafa,&nbsp;Mona S Elneklawi\",\"doi\":\"10.1080/15368378.2023.2208610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Staphylococcus aureus</i> is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of <i>Staphylococcus aureus</i> using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of <i>Staphylococcus aureus</i> were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of <i>Staphylococcus aureus</i> bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2023.2208610\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2023.2208610","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

金黄色葡萄球菌是许多传染病和炎症性疾病的病因,许多研究旨在发现替代抗生素的感染控制和治疗方法。这项工作试图使用纳米颗粒(氧化铁纳米颗粒和银纳米颗粒)和极低频电场(ELF-EF)来降低金黄色葡萄球菌的细菌活性和生长特性。使用金黄色葡萄球菌的细菌悬浮液制备样品,将样品均匀地分组。对照组,10组暴露于ELF-EF,频率范围为(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1 Hz),氧化铁NP处理组,暴露于0.8的氧化铁NP Hz处理组、银NP处理组和最后一组用银NP和0.8处理 赫兹。使用活微生物的抗生素敏感性测试、介电弛豫和生物膜发育来评估形态和分子变化。结果表明,纳米颗粒与ELF-EF在0.8 Hz增强了细菌的抑制效率,这可能是由于结构的变化。介电测量结果支持了这一点,该结果表明,与对照样品相比,处理样品的介电增量和电导率存在差异。获得的生物膜形成测量结果也证实了这一点。我们可以得出结论,金黄色葡萄球菌暴露于ELF-EF和NPs会影响其细胞活性和结构。这项技术无损、安全、快速,可以被认为是减少抗生素使用的一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus.

Staphylococcus aureus is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of Staphylococcus aureus using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of Staphylococcus aureus were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of Staphylococcus aureus bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信