脊髓损伤治疗的新范例:从无细胞治疗到工程改造。

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Bo Qin, Xi-Min Hu, Yan-Xia Huang, Rong-Hua Yang, Kun Xiong
{"title":"脊髓损伤治疗的新范例:从无细胞治疗到工程改造。","authors":"Bo Qin, Xi-Min Hu, Yan-Xia Huang, Rong-Hua Yang, Kun Xiong","doi":"10.2174/1871527322666230418090857","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is an intractable and poorly prognostic neurological disease, and current treatments are still unable to cure it completely and avoid sequelae. Extracellular vesicles (EVs), as important carriers of intercellular communication and pharmacological effects, are considered to be the most promising candidates for SCI therapy because of their low toxicity and immunogenicity, their ability to encapsulate endogenous bioactive molecules (e.g., proteins, lipids, and nucleic acids), and their ability to cross the blood-brain/cerebrospinal barriers. However, poor targeting, low retention rate, and limited therapeutic efficacy of natural EVs have bottlenecked EVs-based SCI therapy. A new paradigm for SCI treatment will be provided by engineering modified EVs. Furthermore, our limited understanding of the role of EVs in SCI pathology hinders the rational design of novel EVbased therapeutic approaches. In this study, we review the pathophysiology after SCI, especially the multicellular EVs-mediated crosstalk; briefly describe the shift from cellular to cell-free therapies for SCI treatment; discuss and analyze the issues related to the route and dose of EVs administration; summarize and present the common strategies for EVs drug loading in the treatment of SCI and point out the shortcomings of these drug loading methods; finally, we analyze and highlight the feasibility and advantages of bio-scaffold-encapsulated EVs for SCI treatment, providing scalable insights into cell-free therapy for SCI.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Paradigm in Spinal Cord Injury Therapy: from Cell-free Treatment to Engineering Modifications.\",\"authors\":\"Bo Qin, Xi-Min Hu, Yan-Xia Huang, Rong-Hua Yang, Kun Xiong\",\"doi\":\"10.2174/1871527322666230418090857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) is an intractable and poorly prognostic neurological disease, and current treatments are still unable to cure it completely and avoid sequelae. Extracellular vesicles (EVs), as important carriers of intercellular communication and pharmacological effects, are considered to be the most promising candidates for SCI therapy because of their low toxicity and immunogenicity, their ability to encapsulate endogenous bioactive molecules (e.g., proteins, lipids, and nucleic acids), and their ability to cross the blood-brain/cerebrospinal barriers. However, poor targeting, low retention rate, and limited therapeutic efficacy of natural EVs have bottlenecked EVs-based SCI therapy. A new paradigm for SCI treatment will be provided by engineering modified EVs. Furthermore, our limited understanding of the role of EVs in SCI pathology hinders the rational design of novel EVbased therapeutic approaches. In this study, we review the pathophysiology after SCI, especially the multicellular EVs-mediated crosstalk; briefly describe the shift from cellular to cell-free therapies for SCI treatment; discuss and analyze the issues related to the route and dose of EVs administration; summarize and present the common strategies for EVs drug loading in the treatment of SCI and point out the shortcomings of these drug loading methods; finally, we analyze and highlight the feasibility and advantages of bio-scaffold-encapsulated EVs for SCI treatment, providing scalable insights into cell-free therapy for SCI.</p>\",\"PeriodicalId\":10456,\"journal\":{\"name\":\"CNS & neurological disorders drug targets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS & neurological disorders drug targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1871527322666230418090857\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871527322666230418090857","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)是一种难治且预后不良的神经系统疾病,目前的治疗方法仍无法彻底治愈并避免后遗症。细胞外囊泡(EVs)作为细胞间通讯和药理作用的重要载体,因其低毒性和免疫原性、可包裹内源性生物活性分子(如蛋白质、脂类和核酸)以及可穿过血脑/脑脊髓屏障等特点,被认为是最有希望用于脊髓损伤治疗的候选物质。然而,天然 EVs 的靶向性差、保留率低、疗效有限,使基于 EVs 的 SCI 治疗陷入瓶颈。工程修饰 EVs 将为 SCI 治疗提供新的范例。此外,我们对 EVs 在 SCI 病理学中作用的了解有限,这阻碍了基于 EVs 的新型治疗方法的合理设计。在本研究中,我们回顾了 SCI 后的病理生理学,特别是多细胞 EVs 介导的串扰;简要介绍了 SCI 治疗从细胞疗法到无细胞疗法的转变;讨论并分析了与 EVs 给药途径和剂量相关的问题;最后,我们分析并强调了生物骨架包裹的EVs治疗SCI的可行性和优势,为无细胞疗法治疗SCI提供了可扩展的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Paradigm in Spinal Cord Injury Therapy: from Cell-free Treatment to Engineering Modifications.

Spinal cord injury (SCI) is an intractable and poorly prognostic neurological disease, and current treatments are still unable to cure it completely and avoid sequelae. Extracellular vesicles (EVs), as important carriers of intercellular communication and pharmacological effects, are considered to be the most promising candidates for SCI therapy because of their low toxicity and immunogenicity, their ability to encapsulate endogenous bioactive molecules (e.g., proteins, lipids, and nucleic acids), and their ability to cross the blood-brain/cerebrospinal barriers. However, poor targeting, low retention rate, and limited therapeutic efficacy of natural EVs have bottlenecked EVs-based SCI therapy. A new paradigm for SCI treatment will be provided by engineering modified EVs. Furthermore, our limited understanding of the role of EVs in SCI pathology hinders the rational design of novel EVbased therapeutic approaches. In this study, we review the pathophysiology after SCI, especially the multicellular EVs-mediated crosstalk; briefly describe the shift from cellular to cell-free therapies for SCI treatment; discuss and analyze the issues related to the route and dose of EVs administration; summarize and present the common strategies for EVs drug loading in the treatment of SCI and point out the shortcomings of these drug loading methods; finally, we analyze and highlight the feasibility and advantages of bio-scaffold-encapsulated EVs for SCI treatment, providing scalable insights into cell-free therapy for SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
158
审稿时长
6-12 weeks
期刊介绍: Aims & Scope CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. CNS & Neurological Disorders - Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信