Adam J Blake, Emmanuel Hung, Stephanie To, Geoffrey Ng, James Qian, Gerhard Gries
{"title":"稳定的苍蝇对光的偏振光有感知和行为反应。","authors":"Adam J Blake, Emmanuel Hung, Stephanie To, Geoffrey Ng, James Qian, Gerhard Gries","doi":"10.1007/s00359-023-01624-y","DOIUrl":null,"url":null,"abstract":"<p><p>Insects use their polarization-sensitive photoreceptors in a variety of ecological contexts including host-foraging. Here, we investigated the effect of polarized light on host foraging by the blood-feeding stable fly, Stomoxys calcitrans, a pest of livestock. Electroretinogram recordings with chromatic adaptation demonstrated that the spectral sensitivity of stable flies resembles that of other calyptrate flies. Histological studies of the flies' compound eye revealed differences in microvillar arrangement of ommatidial types, assumed to be pale and yellow, with the yellow R7 and pale R8 photoreceptors having the greatest polarization sensitivity. In behavioural experiments, stable flies preferred to alight on horizontally polarized stimuli with a high degree of linear polarization. This preferential response disappeared when either ultraviolet (UV) or human-visible wavelengths were omitted from light stimuli. Removing specific wavelength bands further revealed that the combination of UV (330-400 nm) and blue (400-525 nm) wavelength bands was sufficient to enable polarized light discrimination by flies. These findings enhance our understanding of polarization vision and foraging behavior among hematophagous insects and should inform future trap designs.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stable flies sense and behaviorally respond to the polarization of light.\",\"authors\":\"Adam J Blake, Emmanuel Hung, Stephanie To, Geoffrey Ng, James Qian, Gerhard Gries\",\"doi\":\"10.1007/s00359-023-01624-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insects use their polarization-sensitive photoreceptors in a variety of ecological contexts including host-foraging. Here, we investigated the effect of polarized light on host foraging by the blood-feeding stable fly, Stomoxys calcitrans, a pest of livestock. Electroretinogram recordings with chromatic adaptation demonstrated that the spectral sensitivity of stable flies resembles that of other calyptrate flies. Histological studies of the flies' compound eye revealed differences in microvillar arrangement of ommatidial types, assumed to be pale and yellow, with the yellow R7 and pale R8 photoreceptors having the greatest polarization sensitivity. In behavioural experiments, stable flies preferred to alight on horizontally polarized stimuli with a high degree of linear polarization. This preferential response disappeared when either ultraviolet (UV) or human-visible wavelengths were omitted from light stimuli. Removing specific wavelength bands further revealed that the combination of UV (330-400 nm) and blue (400-525 nm) wavelength bands was sufficient to enable polarized light discrimination by flies. These findings enhance our understanding of polarization vision and foraging behavior among hematophagous insects and should inform future trap designs.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-023-01624-y\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-023-01624-y","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Stable flies sense and behaviorally respond to the polarization of light.
Insects use their polarization-sensitive photoreceptors in a variety of ecological contexts including host-foraging. Here, we investigated the effect of polarized light on host foraging by the blood-feeding stable fly, Stomoxys calcitrans, a pest of livestock. Electroretinogram recordings with chromatic adaptation demonstrated that the spectral sensitivity of stable flies resembles that of other calyptrate flies. Histological studies of the flies' compound eye revealed differences in microvillar arrangement of ommatidial types, assumed to be pale and yellow, with the yellow R7 and pale R8 photoreceptors having the greatest polarization sensitivity. In behavioural experiments, stable flies preferred to alight on horizontally polarized stimuli with a high degree of linear polarization. This preferential response disappeared when either ultraviolet (UV) or human-visible wavelengths were omitted from light stimuli. Removing specific wavelength bands further revealed that the combination of UV (330-400 nm) and blue (400-525 nm) wavelength bands was sufficient to enable polarized light discrimination by flies. These findings enhance our understanding of polarization vision and foraging behavior among hematophagous insects and should inform future trap designs.
期刊介绍:
The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields:
- Neurobiology and neuroethology
- Sensory physiology and ecology
- Physiological and hormonal basis of behavior
- Communication, orientation, and locomotion
- Functional imaging and neuroanatomy
Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular.
Colour figures are free in print and online.