{"title":"杏仁核表达生长抑素的神经元向下丘脑和脑干的靶向特异性投射。","authors":"Jane J Bartonjo, Robert F Lundy","doi":"10.1093/chemse/bjac009","DOIUrl":null,"url":null,"abstract":"<p><p>Somatostatin neurons in the central nucleus of the amygdala (CeA/Sst) can be parsed into subpopulations that project either to the nucleus of the solitary tract (NST) or parabrachial nucleus (PBN). We have shown recently that inhibition of CeA/Sst-to-NST neurons increased the ingestion of a normally aversive taste stimulus, quinine HCl (QHCl). Because the CeA innervates other forebrain areas such as the lateral hypothalamus (LH) that also sends axonal projections to the NST, the effects on QHCl intake could be, in part, the result of CeA modulation of LH-to-NST neurons. To address these issues, the present study investigated whether CeA/Sst-to-NST neurons are distinct from CeA/Sst-to-LH neurons. For comparison purposes, additional experiments assessed divergent innervation of the LH by CeA/Sst-to-PBN neurons. In Sst-cre mice, two different retrograde transported flox viruses were injected into the NST and the ipsilateral LH or PBN and ipsilateral LH. The results showed that 90% or more of retrograde-labeled CeA/Sst neurons project either to the LH, NST, or PBN. Separate populations of CeA/Sst neurons projecting to these different regions suggest a highly heterogeneous population in terms of synaptic target and likely function.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074687/pdf/bjac009.pdf","citationCount":"4","resultStr":"{\"title\":\"Target-specific projections of amygdala somatostatin-expressing neurons to the hypothalamus and brainstem.\",\"authors\":\"Jane J Bartonjo, Robert F Lundy\",\"doi\":\"10.1093/chemse/bjac009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Somatostatin neurons in the central nucleus of the amygdala (CeA/Sst) can be parsed into subpopulations that project either to the nucleus of the solitary tract (NST) or parabrachial nucleus (PBN). We have shown recently that inhibition of CeA/Sst-to-NST neurons increased the ingestion of a normally aversive taste stimulus, quinine HCl (QHCl). Because the CeA innervates other forebrain areas such as the lateral hypothalamus (LH) that also sends axonal projections to the NST, the effects on QHCl intake could be, in part, the result of CeA modulation of LH-to-NST neurons. To address these issues, the present study investigated whether CeA/Sst-to-NST neurons are distinct from CeA/Sst-to-LH neurons. For comparison purposes, additional experiments assessed divergent innervation of the LH by CeA/Sst-to-PBN neurons. In Sst-cre mice, two different retrograde transported flox viruses were injected into the NST and the ipsilateral LH or PBN and ipsilateral LH. The results showed that 90% or more of retrograde-labeled CeA/Sst neurons project either to the LH, NST, or PBN. Separate populations of CeA/Sst neurons projecting to these different regions suggest a highly heterogeneous population in terms of synaptic target and likely function.</p>\",\"PeriodicalId\":9771,\"journal\":{\"name\":\"Chemical Senses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074687/pdf/bjac009.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Senses\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1093/chemse/bjac009\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjac009","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Target-specific projections of amygdala somatostatin-expressing neurons to the hypothalamus and brainstem.
Somatostatin neurons in the central nucleus of the amygdala (CeA/Sst) can be parsed into subpopulations that project either to the nucleus of the solitary tract (NST) or parabrachial nucleus (PBN). We have shown recently that inhibition of CeA/Sst-to-NST neurons increased the ingestion of a normally aversive taste stimulus, quinine HCl (QHCl). Because the CeA innervates other forebrain areas such as the lateral hypothalamus (LH) that also sends axonal projections to the NST, the effects on QHCl intake could be, in part, the result of CeA modulation of LH-to-NST neurons. To address these issues, the present study investigated whether CeA/Sst-to-NST neurons are distinct from CeA/Sst-to-LH neurons. For comparison purposes, additional experiments assessed divergent innervation of the LH by CeA/Sst-to-PBN neurons. In Sst-cre mice, two different retrograde transported flox viruses were injected into the NST and the ipsilateral LH or PBN and ipsilateral LH. The results showed that 90% or more of retrograde-labeled CeA/Sst neurons project either to the LH, NST, or PBN. Separate populations of CeA/Sst neurons projecting to these different regions suggest a highly heterogeneous population in terms of synaptic target and likely function.
期刊介绍:
Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.