Tianyi Wang, Jiewei Lew, Jayaraman Premkumar, Chueh Loo Poh, May Win Naing
{"title":"重组胶原蛋白的生产:现状和挑战","authors":"Tianyi Wang, Jiewei Lew, Jayaraman Premkumar, Chueh Loo Poh, May Win Naing","doi":"10.1049/enb.2017.0003","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Collagen, which is often used in healthcare materials and biomedical research, is largely extracted from animal sources. Recombinant human collagen has the potential to be a promising alternative to animal collagen which has many shortcomings, including immunogenicity and lack of biocompatibility. Currently, recombinant human collagen has been expressed in both eukaryotic and prokaryotic hosts with varying degrees of success. One issue with recombinant collagen across all hosts is the inability to achieve full length collagen with native amounts of post-translational modifications, prompting much exciting research in this direction. There has also been much effort in improving yield and biomimicry of recombinant collagen. This review discusses collagen structure and current methods for extracting animal collagen, before introducing current research in synthesising recombinant human collagen in various hosts, and finally highlighting challenges in the field.</p>\n </div>","PeriodicalId":72921,"journal":{"name":"Engineering biology","volume":"1 1","pages":"18-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/enb.2017.0003","citationCount":"46","resultStr":"{\"title\":\"Production of recombinant collagen: state of the art and challenges\",\"authors\":\"Tianyi Wang, Jiewei Lew, Jayaraman Premkumar, Chueh Loo Poh, May Win Naing\",\"doi\":\"10.1049/enb.2017.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Collagen, which is often used in healthcare materials and biomedical research, is largely extracted from animal sources. Recombinant human collagen has the potential to be a promising alternative to animal collagen which has many shortcomings, including immunogenicity and lack of biocompatibility. Currently, recombinant human collagen has been expressed in both eukaryotic and prokaryotic hosts with varying degrees of success. One issue with recombinant collagen across all hosts is the inability to achieve full length collagen with native amounts of post-translational modifications, prompting much exciting research in this direction. There has also been much effort in improving yield and biomimicry of recombinant collagen. This review discusses collagen structure and current methods for extracting animal collagen, before introducing current research in synthesising recombinant human collagen in various hosts, and finally highlighting challenges in the field.</p>\\n </div>\",\"PeriodicalId\":72921,\"journal\":{\"name\":\"Engineering biology\",\"volume\":\"1 1\",\"pages\":\"18-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/enb.2017.0003\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/enb.2017.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enb.2017.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production of recombinant collagen: state of the art and challenges
Collagen, which is often used in healthcare materials and biomedical research, is largely extracted from animal sources. Recombinant human collagen has the potential to be a promising alternative to animal collagen which has many shortcomings, including immunogenicity and lack of biocompatibility. Currently, recombinant human collagen has been expressed in both eukaryotic and prokaryotic hosts with varying degrees of success. One issue with recombinant collagen across all hosts is the inability to achieve full length collagen with native amounts of post-translational modifications, prompting much exciting research in this direction. There has also been much effort in improving yield and biomimicry of recombinant collagen. This review discusses collagen structure and current methods for extracting animal collagen, before introducing current research in synthesising recombinant human collagen in various hosts, and finally highlighting challenges in the field.