p进正式球上不可能的交集。

IF 0.6 Q3 MATHEMATICS
Vlad Serban
{"title":"p进正式球上不可能的交集。","authors":"Vlad Serban","doi":"10.1007/s40993-023-00441-1","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's <i>p</i>-adic formal Manin-Mumford results for <i>n</i>-dimensional <i>p</i>-divisible formal groups <math><mi>F</mi></math> . In particular, given a finitely generated subgroup <math><mi>Γ</mi></math> of <math><mrow><mi>F</mi> <mo>(</mo> <msub><mover><mi>Q</mi> <mo>¯</mo></mover> <mi>p</mi></msub> <mo>)</mo></mrow> </math> and a closed subscheme <math><mrow><mi>X</mi> <mo>↪</mo> <mi>F</mi></mrow> </math> , we show under suitable assumptions that for any points <math><mrow><mi>P</mi> <mo>∈</mo> <mi>X</mi> <mo>(</mo> <msub><mi>C</mi> <mi>p</mi></msub> <mo>)</mo></mrow> </math> satisfying <math><mrow><mi>n</mi> <mi>P</mi> <mo>∈</mo> <mi>Γ</mi></mrow> </math> for some <math><mrow><mi>n</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> , the minimal such orders <i>n</i> are uniformly bounded whenever <i>X</i> does not contain a formal subgroup translate of positive dimension. In contrast, we then provide counter-examples to a full <i>p</i>-adic formal Mordell-Lang result. Finally, we outline some consequences for the study of the Zariski-density of sets of automorphic objects in <i>p</i>-adic deformations. Specifically, we do so in the context of the nearly ordinary <i>p</i>-adic families of cuspidal cohomological automorphic forms for the general linear group constructed by Hida.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149481/pdf/","citationCount":"2","resultStr":"{\"title\":\"Unlikely intersections on the <i>p</i>-adic formal ball.\",\"authors\":\"Vlad Serban\",\"doi\":\"10.1007/s40993-023-00441-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's <i>p</i>-adic formal Manin-Mumford results for <i>n</i>-dimensional <i>p</i>-divisible formal groups <math><mi>F</mi></math> . In particular, given a finitely generated subgroup <math><mi>Γ</mi></math> of <math><mrow><mi>F</mi> <mo>(</mo> <msub><mover><mi>Q</mi> <mo>¯</mo></mover> <mi>p</mi></msub> <mo>)</mo></mrow> </math> and a closed subscheme <math><mrow><mi>X</mi> <mo>↪</mo> <mi>F</mi></mrow> </math> , we show under suitable assumptions that for any points <math><mrow><mi>P</mi> <mo>∈</mo> <mi>X</mi> <mo>(</mo> <msub><mi>C</mi> <mi>p</mi></msub> <mo>)</mo></mrow> </math> satisfying <math><mrow><mi>n</mi> <mi>P</mi> <mo>∈</mo> <mi>Γ</mi></mrow> </math> for some <math><mrow><mi>n</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> , the minimal such orders <i>n</i> are uniformly bounded whenever <i>X</i> does not contain a formal subgroup translate of positive dimension. In contrast, we then provide counter-examples to a full <i>p</i>-adic formal Mordell-Lang result. Finally, we outline some consequences for the study of the Zariski-density of sets of automorphic objects in <i>p</i>-adic deformations. Specifically, we do so in the context of the nearly ordinary <i>p</i>-adic families of cuspidal cohomological automorphic forms for the general linear group constructed by Hida.</p>\",\"PeriodicalId\":43826,\"journal\":{\"name\":\"Research in Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149481/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40993-023-00441-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00441-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了n维p可分形式群F的p进形式Manin-Mumford结果的莫德尔-朗猜想的推广。特别地,给定F (Q¯p)的有限生成子群Γ和闭子方案X“F”,在适当的假设下,我们证明了对于任意点p∈X (C p)满足n p∈Γ,对于某些n∈n,当X不包含正维的形式子群平移时,这些最小阶n是一致有界的。相反,我们提供了一个完整的p进形式莫德尔-朗结果的反例。最后,我们概述了研究p进变形中自同构对象集合的zariski密度的一些结果。具体来说,我们是在Hida构造的一般线性群的尖上同调自同构形式的近普通p进族的背景下进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlikely intersections on the p-adic formal ball.

We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F . In particular, given a finitely generated subgroup Γ of F ( Q ¯ p ) and a closed subscheme X F , we show under suitable assumptions that for any points P X ( C p ) satisfying n P Γ for some n N , the minimal such orders n are uniformly bounded whenever X does not contain a formal subgroup translate of positive dimension. In contrast, we then provide counter-examples to a full p-adic formal Mordell-Lang result. Finally, we outline some consequences for the study of the Zariski-density of sets of automorphic objects in p-adic deformations. Specifically, we do so in the context of the nearly ordinary p-adic families of cuspidal cohomological automorphic forms for the general linear group constructed by Hida.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信