{"title":"西洛他唑对肥胖Wistar大鼠缺血再灌注损伤模型心肌的影响。","authors":"Tolga Demir, Mazlum Sahin, Fatma Tugba Ilal Mert, Fatma Sarac","doi":"10.2174/1570161121666230502141044","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to determine the protective effect of cilostazol on myocardium in obese Wistar rats with induced ischemia-reperfusion injury (IRI).</p><p><strong>Methods: </strong>Four groups with 10 Wistar rats were included: 1] Sham Group: IRI was not established in normal weight-Wistar rats. 2] Control Group: IRI but no cilostazol in normal weight-Wistar rats. 3] Cilostazol in normal weight-Wistar rats: IRI and cilostazol was administered. 4] Cilostazol in obese- Wistar rats: IRI and cilostazol was administered.</p><p><strong>Results: </strong>Tissue adenosine triphosphate (ATP) levels were significantly higher and superoxide dismutase (SOD) levels significantly lower in the control group than in the sham group and normal weight cilostazol group (p=0.024 and p=0.003). Fibrinogen levels were 198 mg/dL in the sham group, 204 mg/dL in the control group, and 187 mg/dL in the normal-weight cilostazol group (p=0.046). Additionally, plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in the control group (p=0.047). The level of ATP was significantly lower in the normal-weight cilostazol group than in the obese group (104 vs 131.2 nmol/g protein, p=0.043). PAI-1 level was 2.4 ng/mL in the normal weight cilostazol group and 3.7 ng/mL in the obese cilostazol group (p=0.029). Normal-weight Wistar rats with cilostazol had significantly better histologic outcomes than the control group and obese Wistar rats (p=0.001 and p=0.001).</p><p><strong>Conclusion: </strong>Cilostazol has a protective effect on myocardial cells in IRI models by decreasing inflammation. The protective role of cilostazol was reduced in obese Wistar rats compared with normal-weight Wistar rats.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Cilostazol on the Myocardium in an Obese Wistar Rat Model of Ischemia-Reperfusion Injury.\",\"authors\":\"Tolga Demir, Mazlum Sahin, Fatma Tugba Ilal Mert, Fatma Sarac\",\"doi\":\"10.2174/1570161121666230502141044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aims to determine the protective effect of cilostazol on myocardium in obese Wistar rats with induced ischemia-reperfusion injury (IRI).</p><p><strong>Methods: </strong>Four groups with 10 Wistar rats were included: 1] Sham Group: IRI was not established in normal weight-Wistar rats. 2] Control Group: IRI but no cilostazol in normal weight-Wistar rats. 3] Cilostazol in normal weight-Wistar rats: IRI and cilostazol was administered. 4] Cilostazol in obese- Wistar rats: IRI and cilostazol was administered.</p><p><strong>Results: </strong>Tissue adenosine triphosphate (ATP) levels were significantly higher and superoxide dismutase (SOD) levels significantly lower in the control group than in the sham group and normal weight cilostazol group (p=0.024 and p=0.003). Fibrinogen levels were 198 mg/dL in the sham group, 204 mg/dL in the control group, and 187 mg/dL in the normal-weight cilostazol group (p=0.046). Additionally, plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in the control group (p=0.047). The level of ATP was significantly lower in the normal-weight cilostazol group than in the obese group (104 vs 131.2 nmol/g protein, p=0.043). PAI-1 level was 2.4 ng/mL in the normal weight cilostazol group and 3.7 ng/mL in the obese cilostazol group (p=0.029). Normal-weight Wistar rats with cilostazol had significantly better histologic outcomes than the control group and obese Wistar rats (p=0.001 and p=0.001).</p><p><strong>Conclusion: </strong>Cilostazol has a protective effect on myocardial cells in IRI models by decreasing inflammation. The protective role of cilostazol was reduced in obese Wistar rats compared with normal-weight Wistar rats.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1570161121666230502141044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1570161121666230502141044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effects of Cilostazol on the Myocardium in an Obese Wistar Rat Model of Ischemia-Reperfusion Injury.
Objectives: This study aims to determine the protective effect of cilostazol on myocardium in obese Wistar rats with induced ischemia-reperfusion injury (IRI).
Methods: Four groups with 10 Wistar rats were included: 1] Sham Group: IRI was not established in normal weight-Wistar rats. 2] Control Group: IRI but no cilostazol in normal weight-Wistar rats. 3] Cilostazol in normal weight-Wistar rats: IRI and cilostazol was administered. 4] Cilostazol in obese- Wistar rats: IRI and cilostazol was administered.
Results: Tissue adenosine triphosphate (ATP) levels were significantly higher and superoxide dismutase (SOD) levels significantly lower in the control group than in the sham group and normal weight cilostazol group (p=0.024 and p=0.003). Fibrinogen levels were 198 mg/dL in the sham group, 204 mg/dL in the control group, and 187 mg/dL in the normal-weight cilostazol group (p=0.046). Additionally, plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in the control group (p=0.047). The level of ATP was significantly lower in the normal-weight cilostazol group than in the obese group (104 vs 131.2 nmol/g protein, p=0.043). PAI-1 level was 2.4 ng/mL in the normal weight cilostazol group and 3.7 ng/mL in the obese cilostazol group (p=0.029). Normal-weight Wistar rats with cilostazol had significantly better histologic outcomes than the control group and obese Wistar rats (p=0.001 and p=0.001).
Conclusion: Cilostazol has a protective effect on myocardial cells in IRI models by decreasing inflammation. The protective role of cilostazol was reduced in obese Wistar rats compared with normal-weight Wistar rats.