Hailing Tang, Changhui Cao, Guangyuan Zhang, Zhengkao Sun
{"title":"多泡脂质体粒径对兔VX2肝肿瘤栓塞及治疗效果的影响。","authors":"Hailing Tang, Changhui Cao, Guangyuan Zhang, Zhengkao Sun","doi":"10.1080/10717544.2022.2157519","DOIUrl":null,"url":null,"abstract":"<p><p>Transcatheter arterial chemoembolization (TACE) is usually considered more efficacious in the local treatment of parenchyma-sparing hepatocellular carcinoma (HCC). At present, embolic agents commonly used in TACE, include DC pellets, Hepasphere, Lipiodol, etc. Except that iodine oil is a viscous fluid embolic agent, other solid microsphere particles used clinically range from 70 to 700 µm, among which 100 to 300 µm is the most commonly used. With the technology development of micro-invasive interventional therapy, the specific distal embolization through TACE to occlude tumor arterial blood supply in patients with HCC is also required more accurately. Effective terminal embolization is considered to be a preferred option for TACE therapy due to significantly improving the survival rate of patients and preserving liver function. In this article, we prepared the multifunctional multivesicular liposomes (IVO-DOX-MVLs) (<100 µm) that can simultaneously encapsulate ioversol and doxorubicin based on the high-phase transition temperature (<i>T</i><sub>m</sub>) lipid ingredients, and evaluated its local artery embolization and therapeutic effect in rabbit VX-2 tumor model. The influence of particle size on occlusion and therapeutic effect of MVLs on rabbit VX-2 liver tumor models were well evaluated, including the tumor volume change, tumor growth rate, and necrosis rate, which were evaluated by magnetic resonance (MR). MVL samples with average particle size distribution of 50-60 µm exhibited fewer off-target embolization. Through TACE, IVO-DOX-MVLs were directly transported to the tumor tissues, playing roles of embolization performance, CT imaging effect, and local tumor killing effect. The feasibility of MVLs as a multifunctional embolic agent in its clinical application can be further improved by optimization of lipid composition and preparation process.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"30 1","pages":"1-16"},"PeriodicalIF":6.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987747/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of particle size of multivesicular liposomes on the embolic and therapeutic effects in rabbit VX2 liver tumor.\",\"authors\":\"Hailing Tang, Changhui Cao, Guangyuan Zhang, Zhengkao Sun\",\"doi\":\"10.1080/10717544.2022.2157519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcatheter arterial chemoembolization (TACE) is usually considered more efficacious in the local treatment of parenchyma-sparing hepatocellular carcinoma (HCC). At present, embolic agents commonly used in TACE, include DC pellets, Hepasphere, Lipiodol, etc. Except that iodine oil is a viscous fluid embolic agent, other solid microsphere particles used clinically range from 70 to 700 µm, among which 100 to 300 µm is the most commonly used. With the technology development of micro-invasive interventional therapy, the specific distal embolization through TACE to occlude tumor arterial blood supply in patients with HCC is also required more accurately. Effective terminal embolization is considered to be a preferred option for TACE therapy due to significantly improving the survival rate of patients and preserving liver function. In this article, we prepared the multifunctional multivesicular liposomes (IVO-DOX-MVLs) (<100 µm) that can simultaneously encapsulate ioversol and doxorubicin based on the high-phase transition temperature (<i>T</i><sub>m</sub>) lipid ingredients, and evaluated its local artery embolization and therapeutic effect in rabbit VX-2 tumor model. The influence of particle size on occlusion and therapeutic effect of MVLs on rabbit VX-2 liver tumor models were well evaluated, including the tumor volume change, tumor growth rate, and necrosis rate, which were evaluated by magnetic resonance (MR). MVL samples with average particle size distribution of 50-60 µm exhibited fewer off-target embolization. Through TACE, IVO-DOX-MVLs were directly transported to the tumor tissues, playing roles of embolization performance, CT imaging effect, and local tumor killing effect. The feasibility of MVLs as a multifunctional embolic agent in its clinical application can be further improved by optimization of lipid composition and preparation process.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"30 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987747/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2022.2157519\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2022.2157519","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Impact of particle size of multivesicular liposomes on the embolic and therapeutic effects in rabbit VX2 liver tumor.
Transcatheter arterial chemoembolization (TACE) is usually considered more efficacious in the local treatment of parenchyma-sparing hepatocellular carcinoma (HCC). At present, embolic agents commonly used in TACE, include DC pellets, Hepasphere, Lipiodol, etc. Except that iodine oil is a viscous fluid embolic agent, other solid microsphere particles used clinically range from 70 to 700 µm, among which 100 to 300 µm is the most commonly used. With the technology development of micro-invasive interventional therapy, the specific distal embolization through TACE to occlude tumor arterial blood supply in patients with HCC is also required more accurately. Effective terminal embolization is considered to be a preferred option for TACE therapy due to significantly improving the survival rate of patients and preserving liver function. In this article, we prepared the multifunctional multivesicular liposomes (IVO-DOX-MVLs) (<100 µm) that can simultaneously encapsulate ioversol and doxorubicin based on the high-phase transition temperature (Tm) lipid ingredients, and evaluated its local artery embolization and therapeutic effect in rabbit VX-2 tumor model. The influence of particle size on occlusion and therapeutic effect of MVLs on rabbit VX-2 liver tumor models were well evaluated, including the tumor volume change, tumor growth rate, and necrosis rate, which were evaluated by magnetic resonance (MR). MVL samples with average particle size distribution of 50-60 µm exhibited fewer off-target embolization. Through TACE, IVO-DOX-MVLs were directly transported to the tumor tissues, playing roles of embolization performance, CT imaging effect, and local tumor killing effect. The feasibility of MVLs as a multifunctional embolic agent in its clinical application can be further improved by optimization of lipid composition and preparation process.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.