{"title":"自体转运体BafA有助于伊丽莎白巴尔通体的促血管生成潜能","authors":"Natsumi Suzuki, Kayo Kumadaki, Kaoru Tatematsu, Yohei Doi, Kentaro Tsukamoto","doi":"10.1111/1348-0421.13057","DOIUrl":null,"url":null,"abstract":"<p><i>Bartonella elizabethae</i> is a rat-borne zoonotic bacterium that causes human infectious endocarditis or neuroretinitis. Recently, a case of bacillary angiomatosis (BA) resulting from this organism was reported, leading to speculation that <i>B. elizabethae</i> may also trigger vasoproliferation. However, there are no reports of <i>B. elizabethae</i> promoting human vascular endothelial cell (EC) proliferation or angiogenesis, and to date, the effects of this bacterium on ECs are unknown. We recently identified a proangiogenic autotransporter, BafA, secreted from <i>B. henselae</i> and <i>B. quintana</i>, which are recognized as <i>Bartonella</i> spp. responsible for BA in humans. Here, we hypothesized that <i>B. elizabethae</i> also harbored a functional <i>bafA</i> gene and examined the proangiogenic activity of recombinant <i>B. elizabethae</i>–derived BafA. The <i>bafA</i> gene of <i>B. elizabethae</i>, which was found to share a 51.1% amino acid sequence identity with BafA of <i>B. henselae</i> and 52.5% with that of <i>B. quintana</i> in the passenger domain, was located in a syntenic region of the genome. The recombinant protein of the N-terminal passenger domain of <i>B. elizabethae</i>-BafA facilitated EC proliferation and capillary structure formation. Furthermore, it upregulated the receptor signaling pathway of vascular endothelial growth factor, as observed in <i>B. henselae</i>-BafA. Taken together, <i>B. elizabethae</i>–derived BafA stimulates human EC proliferation and may contribute to the proangiogenic potential of this bacterium. So far, functional <i>bafA</i> genes have been found in all BA-causing <i>Bartonella</i> spp., supporting the key role BafA may play in BA pathogenesis.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The autotransporter BafA contributes to the proangiogenic potential of Bartonella elizabethae\",\"authors\":\"Natsumi Suzuki, Kayo Kumadaki, Kaoru Tatematsu, Yohei Doi, Kentaro Tsukamoto\",\"doi\":\"10.1111/1348-0421.13057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Bartonella elizabethae</i> is a rat-borne zoonotic bacterium that causes human infectious endocarditis or neuroretinitis. Recently, a case of bacillary angiomatosis (BA) resulting from this organism was reported, leading to speculation that <i>B. elizabethae</i> may also trigger vasoproliferation. However, there are no reports of <i>B. elizabethae</i> promoting human vascular endothelial cell (EC) proliferation or angiogenesis, and to date, the effects of this bacterium on ECs are unknown. We recently identified a proangiogenic autotransporter, BafA, secreted from <i>B. henselae</i> and <i>B. quintana</i>, which are recognized as <i>Bartonella</i> spp. responsible for BA in humans. Here, we hypothesized that <i>B. elizabethae</i> also harbored a functional <i>bafA</i> gene and examined the proangiogenic activity of recombinant <i>B. elizabethae</i>–derived BafA. The <i>bafA</i> gene of <i>B. elizabethae</i>, which was found to share a 51.1% amino acid sequence identity with BafA of <i>B. henselae</i> and 52.5% with that of <i>B. quintana</i> in the passenger domain, was located in a syntenic region of the genome. The recombinant protein of the N-terminal passenger domain of <i>B. elizabethae</i>-BafA facilitated EC proliferation and capillary structure formation. Furthermore, it upregulated the receptor signaling pathway of vascular endothelial growth factor, as observed in <i>B. henselae</i>-BafA. Taken together, <i>B. elizabethae</i>–derived BafA stimulates human EC proliferation and may contribute to the proangiogenic potential of this bacterium. So far, functional <i>bafA</i> genes have been found in all BA-causing <i>Bartonella</i> spp., supporting the key role BafA may play in BA pathogenesis.</p>\",\"PeriodicalId\":18679,\"journal\":{\"name\":\"Microbiology and Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13057\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The autotransporter BafA contributes to the proangiogenic potential of Bartonella elizabethae
Bartonella elizabethae is a rat-borne zoonotic bacterium that causes human infectious endocarditis or neuroretinitis. Recently, a case of bacillary angiomatosis (BA) resulting from this organism was reported, leading to speculation that B. elizabethae may also trigger vasoproliferation. However, there are no reports of B. elizabethae promoting human vascular endothelial cell (EC) proliferation or angiogenesis, and to date, the effects of this bacterium on ECs are unknown. We recently identified a proangiogenic autotransporter, BafA, secreted from B. henselae and B. quintana, which are recognized as Bartonella spp. responsible for BA in humans. Here, we hypothesized that B. elizabethae also harbored a functional bafA gene and examined the proangiogenic activity of recombinant B. elizabethae–derived BafA. The bafA gene of B. elizabethae, which was found to share a 51.1% amino acid sequence identity with BafA of B. henselae and 52.5% with that of B. quintana in the passenger domain, was located in a syntenic region of the genome. The recombinant protein of the N-terminal passenger domain of B. elizabethae-BafA facilitated EC proliferation and capillary structure formation. Furthermore, it upregulated the receptor signaling pathway of vascular endothelial growth factor, as observed in B. henselae-BafA. Taken together, B. elizabethae–derived BafA stimulates human EC proliferation and may contribute to the proangiogenic potential of this bacterium. So far, functional bafA genes have been found in all BA-causing Bartonella spp., supporting the key role BafA may play in BA pathogenesis.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.