LINC00707通过调控miR-145-5p/S1PR1抑制风湿性心脏病的心肌纤维化和免疫紊乱

IF 6.5 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wen Zhao, Guoxiong Huang, Jiemei Ye
{"title":"LINC00707通过调控miR-145-5p/S1PR1抑制风湿性心脏病的心肌纤维化和免疫紊乱","authors":"Wen Zhao, Guoxiong Huang, Jiemei Ye","doi":"10.1080/02648725.2023.2204598","DOIUrl":null,"url":null,"abstract":"<p><p>LINC00707 is a lncRNA that can regulate a variety of diseases. This study mainly investigated that the expression of LINC00707 in rheumatic heart disease (RHD) and LINC00707 regulates S1PR1 by targeting miR-145-5p to inhibit myocardial fibrosis and immune disorder in RHD. A rat model of RHD induced by inactivated group A β-hemolytic streptococcus (GSA) was established. Sixty female Lewis rats (8 weeks of age) were randomly divided into six groups, including control (Con), RHD, RHD+NC, RHD+LINC00707, RHD+miR-145-5p and RHD+LINC00707+miR-145-5p. The mRNA expression was detected by Quantitative Real-time polymerase chain reaction (qRT-PCR). Protein expression of S1PR1 was detected by western blot. The levels of myocardial damage markers (CK-MB, cTnl) and inflammatory immune markers (IL-6, IL-17 and IL-21) were measured by enzyme linked immunosorbent assay (ELISA). The Collagen III/I(COLIII/I) ratio, mRNA expression of COLIIIα1 and FSP1 of rat heart valve tissue in the RHD group was observably higher by comparison with the CON group. The expression of LINC00707 was observably lower in the RHD group. LINC00707 inhibited myocardial fibrosis and immune disorder in RHD. MiR-145-5p was the target gene of LINC00707 via Targetscan prediction. Luciferase reporter experiment confirmed that miR-145-5p was directly regulated by LINC00707. The expression of miR-145-5p in the RHD group was observably higher by comparison with the CON group and LINC00707 observably decreased the expression of miR-145-5p. miR-145-5p mimic reversed the inhibiting effect of LINC00707 on myocardial fibrosis and immune disorder. Furthermore, S1PR1 was confirmed to be downstream gene of miR-145-5p and low expressed in the RHD model. LINC00707 could inhibit myocardial fibrosis and immune disorder in RHD by regulating miR-145-5p/S1PR1.</p>","PeriodicalId":55355,"journal":{"name":"Biotechnology & Genetic Engineering Reviews","volume":" ","pages":"3073-3086"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LINC00707 inhibits myocardial fibrosis and immune disorder in rheumatic heart disease by regulating miR-145-5p/S1PR1.\",\"authors\":\"Wen Zhao, Guoxiong Huang, Jiemei Ye\",\"doi\":\"10.1080/02648725.2023.2204598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>LINC00707 is a lncRNA that can regulate a variety of diseases. This study mainly investigated that the expression of LINC00707 in rheumatic heart disease (RHD) and LINC00707 regulates S1PR1 by targeting miR-145-5p to inhibit myocardial fibrosis and immune disorder in RHD. A rat model of RHD induced by inactivated group A β-hemolytic streptococcus (GSA) was established. Sixty female Lewis rats (8 weeks of age) were randomly divided into six groups, including control (Con), RHD, RHD+NC, RHD+LINC00707, RHD+miR-145-5p and RHD+LINC00707+miR-145-5p. The mRNA expression was detected by Quantitative Real-time polymerase chain reaction (qRT-PCR). Protein expression of S1PR1 was detected by western blot. The levels of myocardial damage markers (CK-MB, cTnl) and inflammatory immune markers (IL-6, IL-17 and IL-21) were measured by enzyme linked immunosorbent assay (ELISA). The Collagen III/I(COLIII/I) ratio, mRNA expression of COLIIIα1 and FSP1 of rat heart valve tissue in the RHD group was observably higher by comparison with the CON group. The expression of LINC00707 was observably lower in the RHD group. LINC00707 inhibited myocardial fibrosis and immune disorder in RHD. MiR-145-5p was the target gene of LINC00707 via Targetscan prediction. Luciferase reporter experiment confirmed that miR-145-5p was directly regulated by LINC00707. The expression of miR-145-5p in the RHD group was observably higher by comparison with the CON group and LINC00707 observably decreased the expression of miR-145-5p. miR-145-5p mimic reversed the inhibiting effect of LINC00707 on myocardial fibrosis and immune disorder. Furthermore, S1PR1 was confirmed to be downstream gene of miR-145-5p and low expressed in the RHD model. LINC00707 could inhibit myocardial fibrosis and immune disorder in RHD by regulating miR-145-5p/S1PR1.</p>\",\"PeriodicalId\":55355,\"journal\":{\"name\":\"Biotechnology & Genetic Engineering Reviews\",\"volume\":\" \",\"pages\":\"3073-3086\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology & Genetic Engineering Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/02648725.2023.2204598\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Genetic Engineering Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02648725.2023.2204598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

LINC00707是一种能调控多种疾病的lncRNA。本研究主要探讨了LINC00707在风湿性心脏病(RHD)中的表达,以及LINC00707通过靶向miR-145-5p调控S1PR1以抑制RHD的心肌纤维化和免疫紊乱。我们建立了由灭活的 A 组 β 溶血性链球菌(GSA)诱导的 RHD 大鼠模型。将 60 只雌性 Lewis 大鼠(8 周龄)随机分为 6 组,包括对照组(Con)、RHD 组、RHD+NC 组、RHD+LINC00707 组、RHD+miR-145-5p 组和 RHD+LINC00707+miR-145-5p 组。mRNA 表达采用定量实时聚合酶链反应(qRT-PCR)检测。蛋白印迹法检测 S1PR1 的蛋白表达。心肌损伤标志物(CK-MB、cTnl)和炎症免疫标志物(IL-6、IL-17 和 IL-21)的水平通过酶联免疫吸附试验(ELISA)进行检测。与 CON 组相比,RHD 组大鼠心脏瓣膜组织的胶原 III/I(COLIII/I)比值、COLIIIα1 和 FSP1 的 mRNA 表达明显升高。LINC00707的表达在RHD组明显降低。LINC00707可抑制RHD组心肌纤维化和免疫紊乱。通过Targetscan预测,MiR-145-5p是LINC00707的靶基因。荧光素酶报告实验证实,miR-145-5p受LINC00707直接调控。miR-145-5p模拟物逆转了LINC00707对心肌纤维化和免疫紊乱的抑制作用。此外,S1PR1被证实是miR-145-5p的下游基因,在RHD模型中低表达。LINC00707可通过调节miR-145-5p/S1PR1抑制RHD的心肌纤维化和免疫紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LINC00707 inhibits myocardial fibrosis and immune disorder in rheumatic heart disease by regulating miR-145-5p/S1PR1.

LINC00707 is a lncRNA that can regulate a variety of diseases. This study mainly investigated that the expression of LINC00707 in rheumatic heart disease (RHD) and LINC00707 regulates S1PR1 by targeting miR-145-5p to inhibit myocardial fibrosis and immune disorder in RHD. A rat model of RHD induced by inactivated group A β-hemolytic streptococcus (GSA) was established. Sixty female Lewis rats (8 weeks of age) were randomly divided into six groups, including control (Con), RHD, RHD+NC, RHD+LINC00707, RHD+miR-145-5p and RHD+LINC00707+miR-145-5p. The mRNA expression was detected by Quantitative Real-time polymerase chain reaction (qRT-PCR). Protein expression of S1PR1 was detected by western blot. The levels of myocardial damage markers (CK-MB, cTnl) and inflammatory immune markers (IL-6, IL-17 and IL-21) were measured by enzyme linked immunosorbent assay (ELISA). The Collagen III/I(COLIII/I) ratio, mRNA expression of COLIIIα1 and FSP1 of rat heart valve tissue in the RHD group was observably higher by comparison with the CON group. The expression of LINC00707 was observably lower in the RHD group. LINC00707 inhibited myocardial fibrosis and immune disorder in RHD. MiR-145-5p was the target gene of LINC00707 via Targetscan prediction. Luciferase reporter experiment confirmed that miR-145-5p was directly regulated by LINC00707. The expression of miR-145-5p in the RHD group was observably higher by comparison with the CON group and LINC00707 observably decreased the expression of miR-145-5p. miR-145-5p mimic reversed the inhibiting effect of LINC00707 on myocardial fibrosis and immune disorder. Furthermore, S1PR1 was confirmed to be downstream gene of miR-145-5p and low expressed in the RHD model. LINC00707 could inhibit myocardial fibrosis and immune disorder in RHD by regulating miR-145-5p/S1PR1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology & Genetic Engineering Reviews
Biotechnology & Genetic Engineering Reviews BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.50
自引率
3.10%
发文量
33
期刊介绍: Biotechnology & Genetic Engineering Reviews publishes major invited review articles covering important developments in industrial, agricultural and medical applications of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信