{"title":"果蝇雌性生殖系的极性和轴的形成。","authors":"Daniel St Johnston","doi":"10.1016/bs.ctdb.2023.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>By the time a Drosophila egg is laid, both major body axes have already been defined and it contains all the nutrients needed to develop into a free-living larva in 24 h. By contrast, it takes almost a week to make an egg from a female germline stem cell, during the complex process of oogenesis. This review will discuss key symmetry-breaking steps in Drosophila oogenesis that lead to the polarisation of both body axes: the asymmetric divisions of the germline stem cells; the selection of the oocyte from the 16-cell germline cyst; the positioning of the oocyte at the posterior of the cyst; Gurken signalling from the oocyte to polarise the anterior-posterior axis of the somatic follicle cell epithelium around the developing germline cyst; the signalling back from the posterior follicle cells to polarise the anterior-posterior axis of the oocyte; and the migration of the oocyte nucleus that specifies the dorsal-ventral axis. Since each event creates the preconditions for the next, I will focus on the mechanisms that drive these symmetry-breaking steps, how they are linked and the outstanding questions that remain to be answered.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"154 ","pages":"73-97"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polarity and axis formation in the Drosophila female germ line.\",\"authors\":\"Daniel St Johnston\",\"doi\":\"10.1016/bs.ctdb.2023.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By the time a Drosophila egg is laid, both major body axes have already been defined and it contains all the nutrients needed to develop into a free-living larva in 24 h. By contrast, it takes almost a week to make an egg from a female germline stem cell, during the complex process of oogenesis. This review will discuss key symmetry-breaking steps in Drosophila oogenesis that lead to the polarisation of both body axes: the asymmetric divisions of the germline stem cells; the selection of the oocyte from the 16-cell germline cyst; the positioning of the oocyte at the posterior of the cyst; Gurken signalling from the oocyte to polarise the anterior-posterior axis of the somatic follicle cell epithelium around the developing germline cyst; the signalling back from the posterior follicle cells to polarise the anterior-posterior axis of the oocyte; and the migration of the oocyte nucleus that specifies the dorsal-ventral axis. Since each event creates the preconditions for the next, I will focus on the mechanisms that drive these symmetry-breaking steps, how they are linked and the outstanding questions that remain to be answered.</p>\",\"PeriodicalId\":55191,\"journal\":{\"name\":\"Current Topics in Developmental Biology\",\"volume\":\"154 \",\"pages\":\"73-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Topics in Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctdb.2023.02.002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2023.02.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Polarity and axis formation in the Drosophila female germ line.
By the time a Drosophila egg is laid, both major body axes have already been defined and it contains all the nutrients needed to develop into a free-living larva in 24 h. By contrast, it takes almost a week to make an egg from a female germline stem cell, during the complex process of oogenesis. This review will discuss key symmetry-breaking steps in Drosophila oogenesis that lead to the polarisation of both body axes: the asymmetric divisions of the germline stem cells; the selection of the oocyte from the 16-cell germline cyst; the positioning of the oocyte at the posterior of the cyst; Gurken signalling from the oocyte to polarise the anterior-posterior axis of the somatic follicle cell epithelium around the developing germline cyst; the signalling back from the posterior follicle cells to polarise the anterior-posterior axis of the oocyte; and the migration of the oocyte nucleus that specifies the dorsal-ventral axis. Since each event creates the preconditions for the next, I will focus on the mechanisms that drive these symmetry-breaking steps, how they are linked and the outstanding questions that remain to be answered.