利用定量方法了解叶表皮的发育。

Quantitative Plant Biology Pub Date : 2022-12-09 eCollection Date: 2022-01-01 DOI:10.1017/qpb.2022.25
Chi Kuan, Shao-Li Yang, Chin-Min Kimmy Ho
{"title":"利用定量方法了解叶表皮的发育。","authors":"Chi Kuan, Shao-Li Yang, Chin-Min Kimmy Ho","doi":"10.1017/qpb.2022.25","DOIUrl":null,"url":null,"abstract":"<p><p>As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097589/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using quantitative methods to understand leaf epidermal development.\",\"authors\":\"Chi Kuan, Shao-Li Yang, Chin-Min Kimmy Ho\",\"doi\":\"10.1017/qpb.2022.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.</p>\",\"PeriodicalId\":20825,\"journal\":{\"name\":\"Quantitative Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097589/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qpb.2022.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2022.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为植物与环境之间的界面,叶片表皮提供了抵御干旱、紫外线和病原体侵袭的第一层保护。这个细胞层由高度协调的特化细胞组成,如气孔、铺面细胞和毛状体。虽然我们已经从气孔、毛状体和铺面细胞形成的基因剖析中学到了很多知识,但新出现的监测细胞或组织动态的定量测量方法将使我们能够进一步研究叶表皮发育过程中的细胞状态转换和命运决定。在本综述中,我们将介绍拟南芥表皮细胞类型的形成,并举例说明叶片研究中描述表型的定量工具。我们将进一步关注参与触发细胞命运的细胞因子及其在机理研究和生物模式中的定量测量。全面了解功能性叶表皮是如何发育的,将有助于提高作物的抗逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using quantitative methods to understand leaf epidermal development.

Using quantitative methods to understand leaf epidermal development.

Using quantitative methods to understand leaf epidermal development.

Using quantitative methods to understand leaf epidermal development.

As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信