Meera B Krishna, Betcy Susan Johnson, Madavan Vasudevan, Sathy M Pillai, Malini Laloraya
{"title":"PCOS女性pbmc中miRNA-mRNA网络识别过度激活的应激激活激酶。","authors":"Meera B Krishna, Betcy Susan Johnson, Madavan Vasudevan, Sathy M Pillai, Malini Laloraya","doi":"10.33594/000000622","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Earlier studies have revealed the miRNAs and mRNAs involved in Polycystic Ovarian Syndrome (PCOS), but little is known about their regulatory networks.</p><p><strong>Methods: </strong>To address this issue, we applied a comprehensive miRNA, mRNA profiling approach in peripheral blood of PCOS patients. We identified 30 differential miRNAs and 3310 differential transcripts. A robust computational framework was created to integrate matched miRNA and mRNA expression profiles in PCOS using feed-forward loops.</p><p><strong>Results: </strong>The network consisted of differential miRNAs, transcription factors (TFs), and their common predicted target genes. The key network consisted of 14 non-orphan network clusters with 50 TF-gene pairs, 8 TF-TF pairs, 6 miRNA-TF pairs and 36 miRNA- gene pairs which were later dissected into 16 subclusters. Gene ontology annotations revealed that a host of signals (hormone, growth factors -EGF/ PDGF, thrombopoietin, oxidative stress and vitamin/nutrition) regulate MAPK signaling altering angiogenesis, JAK-STAT signaling, apoptosis, inflammatory and immune response and steroidogenesis in PCOS women.</p><p><strong>Conclusion: </strong>MAPK signaling is identified as the syndrome´s major dysregulated pathway. Our data imparts a robust foundation to expand the work and pave the way to focus efforts on p38MAPK targeted therapeutic strategies in PCOS.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miRNA-mRNA Network in PBMCs of PCOS Women Identifies Overactivated Stress-Activated Kinases.\",\"authors\":\"Meera B Krishna, Betcy Susan Johnson, Madavan Vasudevan, Sathy M Pillai, Malini Laloraya\",\"doi\":\"10.33594/000000622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Earlier studies have revealed the miRNAs and mRNAs involved in Polycystic Ovarian Syndrome (PCOS), but little is known about their regulatory networks.</p><p><strong>Methods: </strong>To address this issue, we applied a comprehensive miRNA, mRNA profiling approach in peripheral blood of PCOS patients. We identified 30 differential miRNAs and 3310 differential transcripts. A robust computational framework was created to integrate matched miRNA and mRNA expression profiles in PCOS using feed-forward loops.</p><p><strong>Results: </strong>The network consisted of differential miRNAs, transcription factors (TFs), and their common predicted target genes. The key network consisted of 14 non-orphan network clusters with 50 TF-gene pairs, 8 TF-TF pairs, 6 miRNA-TF pairs and 36 miRNA- gene pairs which were later dissected into 16 subclusters. Gene ontology annotations revealed that a host of signals (hormone, growth factors -EGF/ PDGF, thrombopoietin, oxidative stress and vitamin/nutrition) regulate MAPK signaling altering angiogenesis, JAK-STAT signaling, apoptosis, inflammatory and immune response and steroidogenesis in PCOS women.</p><p><strong>Conclusion: </strong>MAPK signaling is identified as the syndrome´s major dysregulated pathway. Our data imparts a robust foundation to expand the work and pave the way to focus efforts on p38MAPK targeted therapeutic strategies in PCOS.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
miRNA-mRNA Network in PBMCs of PCOS Women Identifies Overactivated Stress-Activated Kinases.
Background/aims: Earlier studies have revealed the miRNAs and mRNAs involved in Polycystic Ovarian Syndrome (PCOS), but little is known about their regulatory networks.
Methods: To address this issue, we applied a comprehensive miRNA, mRNA profiling approach in peripheral blood of PCOS patients. We identified 30 differential miRNAs and 3310 differential transcripts. A robust computational framework was created to integrate matched miRNA and mRNA expression profiles in PCOS using feed-forward loops.
Results: The network consisted of differential miRNAs, transcription factors (TFs), and their common predicted target genes. The key network consisted of 14 non-orphan network clusters with 50 TF-gene pairs, 8 TF-TF pairs, 6 miRNA-TF pairs and 36 miRNA- gene pairs which were later dissected into 16 subclusters. Gene ontology annotations revealed that a host of signals (hormone, growth factors -EGF/ PDGF, thrombopoietin, oxidative stress and vitamin/nutrition) regulate MAPK signaling altering angiogenesis, JAK-STAT signaling, apoptosis, inflammatory and immune response and steroidogenesis in PCOS women.
Conclusion: MAPK signaling is identified as the syndrome´s major dysregulated pathway. Our data imparts a robust foundation to expand the work and pave the way to focus efforts on p38MAPK targeted therapeutic strategies in PCOS.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.