二元响应的回归不连续及外推处理的局部极大似然估计。

IF 3 4区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
Goeun Lee, Myoung-Jae Lee
{"title":"二元响应的回归不连续及外推处理的局部极大似然估计。","authors":"Goeun Lee,&nbsp;Myoung-Jae Lee","doi":"10.1177/0193841X221105968","DOIUrl":null,"url":null,"abstract":"<p><p>Regression discontinuity is popular in finding treatment/policy effects when the treatment is determined by a continuous variable crossing a cutoff. Typically, a local linear regression (LLR) estimator is used to find the effects. For binary response, however, LLR is not suitable in extrapolating the treatment, as in doubling/tripling the treatment dose/intensity. The reason is that doubling/tripling the LLR estimate can give a number out of the bound <math><mrow><mrow><mo>[</mo><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mtext> </mtext><mn>1</mn></mrow><mo>]</mo></mrow></mrow></math>, despite that the effect should be a change in probability. We propose local maximum likelihood estimators which overcome these shortcomings, while giving almost the same estimates as the LLR estimator does for the original treatment. A simulation study and an empirical analysis for effects of an income subsidy program on religion demonstrate these points.</p>","PeriodicalId":47533,"journal":{"name":"Evaluation Review","volume":"47 2","pages":"182-208"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regression Discontinuity for Binary Response and Local Maximum Likelihood Estimator to Extrapolate Treatment.\",\"authors\":\"Goeun Lee,&nbsp;Myoung-Jae Lee\",\"doi\":\"10.1177/0193841X221105968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regression discontinuity is popular in finding treatment/policy effects when the treatment is determined by a continuous variable crossing a cutoff. Typically, a local linear regression (LLR) estimator is used to find the effects. For binary response, however, LLR is not suitable in extrapolating the treatment, as in doubling/tripling the treatment dose/intensity. The reason is that doubling/tripling the LLR estimate can give a number out of the bound <math><mrow><mrow><mo>[</mo><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mtext> </mtext><mn>1</mn></mrow><mo>]</mo></mrow></mrow></math>, despite that the effect should be a change in probability. We propose local maximum likelihood estimators which overcome these shortcomings, while giving almost the same estimates as the LLR estimator does for the original treatment. A simulation study and an empirical analysis for effects of an income subsidy program on religion demonstrate these points.</p>\",\"PeriodicalId\":47533,\"journal\":{\"name\":\"Evaluation Review\",\"volume\":\"47 2\",\"pages\":\"182-208\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evaluation Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0193841X221105968\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evaluation Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0193841X221105968","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

当处理是由一个连续变量跨越一个截止点来决定时,在寻找治疗/政策效果时,回归不连续是很流行的。通常,使用局部线性回归(LLR)估计器来发现影响。然而,对于二元反应,LLR不适用于外推治疗,如加倍/三倍治疗剂量/强度。原因是,将LLR估计值加倍/三倍可能会给出一个超出界限[- 1,1]的数字,尽管其效果应该是概率的变化。我们提出了克服这些缺点的局部极大似然估计,同时给出了与原始处理的LLR估计几乎相同的估计。一项收入补贴计划对宗教影响的模拟研究和实证分析证明了这些观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression Discontinuity for Binary Response and Local Maximum Likelihood Estimator to Extrapolate Treatment.

Regression discontinuity is popular in finding treatment/policy effects when the treatment is determined by a continuous variable crossing a cutoff. Typically, a local linear regression (LLR) estimator is used to find the effects. For binary response, however, LLR is not suitable in extrapolating the treatment, as in doubling/tripling the treatment dose/intensity. The reason is that doubling/tripling the LLR estimate can give a number out of the bound [-1, 1], despite that the effect should be a change in probability. We propose local maximum likelihood estimators which overcome these shortcomings, while giving almost the same estimates as the LLR estimator does for the original treatment. A simulation study and an empirical analysis for effects of an income subsidy program on religion demonstrate these points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evaluation Review
Evaluation Review SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
2.90
自引率
11.10%
发文量
80
期刊介绍: Evaluation Review is the forum for researchers, planners, and policy makers engaged in the development, implementation, and utilization of studies aimed at the betterment of the human condition. The Editors invite submission of papers reporting the findings of evaluation studies in such fields as child development, health, education, income security, manpower, mental health, criminal justice, and the physical and social environments. In addition, Evaluation Review will contain articles on methodological developments, discussions of the state of the art, and commentaries on issues related to the application of research results. Special features will include periodic review essays, "research briefs", and "craft reports".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信