{"title":"法舒地尔通过抑制炎症和改善神经营养因子表达减轻大鼠脑缺血再灌注损伤。","authors":"Min-Fang Guo, Hui-Yu Zhang, Pei-Jun Zhang, Yi-Jin Zhao, Jing-Wen Yu, Tao Meng, Meng-Di Li, Na Li, Cun-Gen Ma, Li-Juan Song, Jie-Zhong Yu","doi":"10.55782/ane-2023-010","DOIUrl":null,"url":null,"abstract":"<p><p>The Rho kinase inhibitor fasudil exerts neuroprotective effects. We previously showed that fasudil can regulate M1/M2 microglia polarization and inhibit neuroinflammation. Here, the therapeutic effect of fasudil on cerebral ischemia‑reperfusion (I/R) injury was investigated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model in Sprague‑Dawley rats. The effect of fasudil on the phenotype of microglia and neurotrophic factors in the I/R brain and its potential molecular mechanism was also explored. It was found that fasudil ameliorated neurological deficits, neuronal apoptosis, and inflammatory response in rats with cerebral I/R injury. Fasudil also promoted the polarization of microglia into the M2 phenotype, in turn promoting the secretion of neurotrophic factors. Furthermore, fasudil significantly inhibited the expression of TLR4 and NF‑κB. These findings suggest that fasudil could inhibit the neuroinflammatory response and reduce brain injury after I/R injury by regulating the shift of microglia from an inflammatory M1 phenotype to an anti‑inflammatory M2 phenotype, which may be related to the regulation of the TLR4/ NF‑κB signal pathway.</p>","PeriodicalId":7032,"journal":{"name":"Acta neurobiologiae experimentalis","volume":"83 1","pages":"97-110"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fasudil alleviates cerebral ischemia‑reperfusion injury by inhibiting inflammation and improving neurotrophic factor expression in rats.\",\"authors\":\"Min-Fang Guo, Hui-Yu Zhang, Pei-Jun Zhang, Yi-Jin Zhao, Jing-Wen Yu, Tao Meng, Meng-Di Li, Na Li, Cun-Gen Ma, Li-Juan Song, Jie-Zhong Yu\",\"doi\":\"10.55782/ane-2023-010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Rho kinase inhibitor fasudil exerts neuroprotective effects. We previously showed that fasudil can regulate M1/M2 microglia polarization and inhibit neuroinflammation. Here, the therapeutic effect of fasudil on cerebral ischemia‑reperfusion (I/R) injury was investigated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model in Sprague‑Dawley rats. The effect of fasudil on the phenotype of microglia and neurotrophic factors in the I/R brain and its potential molecular mechanism was also explored. It was found that fasudil ameliorated neurological deficits, neuronal apoptosis, and inflammatory response in rats with cerebral I/R injury. Fasudil also promoted the polarization of microglia into the M2 phenotype, in turn promoting the secretion of neurotrophic factors. Furthermore, fasudil significantly inhibited the expression of TLR4 and NF‑κB. These findings suggest that fasudil could inhibit the neuroinflammatory response and reduce brain injury after I/R injury by regulating the shift of microglia from an inflammatory M1 phenotype to an anti‑inflammatory M2 phenotype, which may be related to the regulation of the TLR4/ NF‑κB signal pathway.</p>\",\"PeriodicalId\":7032,\"journal\":{\"name\":\"Acta neurobiologiae experimentalis\",\"volume\":\"83 1\",\"pages\":\"97-110\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta neurobiologiae experimentalis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.55782/ane-2023-010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurobiologiae experimentalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55782/ane-2023-010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Fasudil alleviates cerebral ischemia‑reperfusion injury by inhibiting inflammation and improving neurotrophic factor expression in rats.
The Rho kinase inhibitor fasudil exerts neuroprotective effects. We previously showed that fasudil can regulate M1/M2 microglia polarization and inhibit neuroinflammation. Here, the therapeutic effect of fasudil on cerebral ischemia‑reperfusion (I/R) injury was investigated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model in Sprague‑Dawley rats. The effect of fasudil on the phenotype of microglia and neurotrophic factors in the I/R brain and its potential molecular mechanism was also explored. It was found that fasudil ameliorated neurological deficits, neuronal apoptosis, and inflammatory response in rats with cerebral I/R injury. Fasudil also promoted the polarization of microglia into the M2 phenotype, in turn promoting the secretion of neurotrophic factors. Furthermore, fasudil significantly inhibited the expression of TLR4 and NF‑κB. These findings suggest that fasudil could inhibit the neuroinflammatory response and reduce brain injury after I/R injury by regulating the shift of microglia from an inflammatory M1 phenotype to an anti‑inflammatory M2 phenotype, which may be related to the regulation of the TLR4/ NF‑κB signal pathway.
期刊介绍:
Acta Neurobiologiae Experimentalis (ISSN: 0065-1400 (print), eISSN: 1689-0035) covers all aspects of neuroscience, from molecular and cellular neurobiology of the nervous system, through cellular and systems electrophysiology, brain imaging, functional and comparative neuroanatomy, development and evolution of the nervous system, behavior and neuropsychology to brain aging and pathology, including neuroinformatics and modeling.