为研究模式纤毛虫嗜热四膜虫减数分裂提供实用参考。

IF 5.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Marine Life Science & Technology Pub Date : 2022-11-22 eCollection Date: 2022-11-01 DOI:10.1007/s42995-022-00149-8
Miao Tian, Xia Cai, Yujie Liu, Mingmei Liucong, Rachel Howard-Till
{"title":"为研究模式纤毛虫嗜热四膜虫减数分裂提供实用参考。","authors":"Miao Tian, Xia Cai, Yujie Liu, Mingmei Liucong, Rachel Howard-Till","doi":"10.1007/s42995-022-00149-8","DOIUrl":null,"url":null,"abstract":"<p><p>Meiosis is a critical cell division program that produces haploid gametes for sexual reproduction. Abnormalities in meiosis are often causes of infertility and birth defects (e.g., Down syndrome). Most organisms use a highly specialized zipper-like protein complex, the synaptonemal complex (SC), to guide and stabilize pairing of homologous chromosomes in meiosis. Although the SC is critical for meiosis in many eukaryotes, there are organisms that perform meiosis without a functional SC. However, such SC-less meiosis is poorly characterized. To understand the features of SC-less meiosis and its adaptive significance, the ciliated protozoan <i>Tetrahymena</i> was selected as a model. Meiosis research in <i>Tetrahymena</i> has revealed intriguing aspects of the regulatory programs utilized in its SC-less meiosis, yet additional efforts are needed for obtaining an in-depth comprehension of mechanisms that are associated with the absence of SC. Here, aiming at promoting a wider application of <i>Tetrahymena</i> for meiosis research, we introduce basic concepts and core techniques for studying meiosis in <i>Tetrahymena</i> and then suggest future directions for expanding the current <i>Tetrahymena</i> meiosis research toolbox. These methodologies could be adopted for dissecting meiosis in poorly characterized ciliates that might reveal novel features. Such data will hopefully provide insights into the function of the SC and the evolution of meiosis from a unique perspective.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-022-00149-8.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"4 4","pages":"595-608"},"PeriodicalIF":5.8000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077211/pdf/","citationCount":"0","resultStr":"{\"title\":\"A practical reference for studying meiosis in the model ciliate <i>Tetrahymena thermophila</i>.\",\"authors\":\"Miao Tian, Xia Cai, Yujie Liu, Mingmei Liucong, Rachel Howard-Till\",\"doi\":\"10.1007/s42995-022-00149-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meiosis is a critical cell division program that produces haploid gametes for sexual reproduction. Abnormalities in meiosis are often causes of infertility and birth defects (e.g., Down syndrome). Most organisms use a highly specialized zipper-like protein complex, the synaptonemal complex (SC), to guide and stabilize pairing of homologous chromosomes in meiosis. Although the SC is critical for meiosis in many eukaryotes, there are organisms that perform meiosis without a functional SC. However, such SC-less meiosis is poorly characterized. To understand the features of SC-less meiosis and its adaptive significance, the ciliated protozoan <i>Tetrahymena</i> was selected as a model. Meiosis research in <i>Tetrahymena</i> has revealed intriguing aspects of the regulatory programs utilized in its SC-less meiosis, yet additional efforts are needed for obtaining an in-depth comprehension of mechanisms that are associated with the absence of SC. Here, aiming at promoting a wider application of <i>Tetrahymena</i> for meiosis research, we introduce basic concepts and core techniques for studying meiosis in <i>Tetrahymena</i> and then suggest future directions for expanding the current <i>Tetrahymena</i> meiosis research toolbox. These methodologies could be adopted for dissecting meiosis in poorly characterized ciliates that might reveal novel features. Such data will hopefully provide insights into the function of the SC and the evolution of meiosis from a unique perspective.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-022-00149-8.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":\"4 4\",\"pages\":\"595-608\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077211/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-022-00149-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-022-00149-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

减数分裂是一个关键的细胞分裂程序,产生单倍体配子进行有性生殖。减数分裂异常通常是不育和出生缺陷(如唐氏综合症)的原因。大多数生物体使用一种高度特化的拉链状蛋白质复合体,即突触复合体(SC)来指导和稳定减数分裂过程中同源染色体的配对。尽管在许多真核生物中SC对减数分裂至关重要,但也有生物体在没有功能性SC的情况下进行减数分裂。然而,这种无SC的减数分裂的特征很少。为了解SC-less减数分裂的特征及其适应意义,以纤毛原生动物Tetrahymena为模型。四膜虫的减数分裂研究已经揭示了其无SC减数分裂中利用的调控程序的有趣方面,但需要进一步的努力来深入理解与无SC相关的机制。本文介绍了四膜虫减数分裂研究的基本概念和核心技术,并提出了扩大现有四膜虫减数分裂研究工具箱的未来发展方向。这些方法可用于解剖纤毛虫减数分裂,这可能会揭示新的特征。这些数据有望从一个独特的角度对SC的功能和减数分裂的进化提供见解。补充信息:在线版本包含补充资料,下载地址:10.1007/s42995-022-00149-8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila.

Meiosis is a critical cell division program that produces haploid gametes for sexual reproduction. Abnormalities in meiosis are often causes of infertility and birth defects (e.g., Down syndrome). Most organisms use a highly specialized zipper-like protein complex, the synaptonemal complex (SC), to guide and stabilize pairing of homologous chromosomes in meiosis. Although the SC is critical for meiosis in many eukaryotes, there are organisms that perform meiosis without a functional SC. However, such SC-less meiosis is poorly characterized. To understand the features of SC-less meiosis and its adaptive significance, the ciliated protozoan Tetrahymena was selected as a model. Meiosis research in Tetrahymena has revealed intriguing aspects of the regulatory programs utilized in its SC-less meiosis, yet additional efforts are needed for obtaining an in-depth comprehension of mechanisms that are associated with the absence of SC. Here, aiming at promoting a wider application of Tetrahymena for meiosis research, we introduce basic concepts and core techniques for studying meiosis in Tetrahymena and then suggest future directions for expanding the current Tetrahymena meiosis research toolbox. These methodologies could be adopted for dissecting meiosis in poorly characterized ciliates that might reveal novel features. Such data will hopefully provide insights into the function of the SC and the evolution of meiosis from a unique perspective.

Supplementary information: The online version contains supplementary material available at 10.1007/s42995-022-00149-8.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Life Science & Technology
Marine Life Science & Technology MARINE & FRESHWATER BIOLOGY-
CiteScore
9.60
自引率
10.50%
发文量
58
期刊介绍: Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats. The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信