流动空气消毒器简单有效的气溶胶病原体消毒试验

Q1 Social Sciences
Xuling Liu , Zhiran Qin , Linqing Wang , Xiaoting Xie , Yifang Fu , Jianhai Yu , Zuxin Liang , Xiaoen He , Jingshu Li , Hong Dai , Jinxiu Yao , Qinghua Wu , Weiwei Xiao , Li Zhu , Chengsong Wan , Bao Zhang , Wei Zhao
{"title":"流动空气消毒器简单有效的气溶胶病原体消毒试验","authors":"Xuling Liu ,&nbsp;Zhiran Qin ,&nbsp;Linqing Wang ,&nbsp;Xiaoting Xie ,&nbsp;Yifang Fu ,&nbsp;Jianhai Yu ,&nbsp;Zuxin Liang ,&nbsp;Xiaoen He ,&nbsp;Jingshu Li ,&nbsp;Hong Dai ,&nbsp;Jinxiu Yao ,&nbsp;Qinghua Wu ,&nbsp;Weiwei Xiao ,&nbsp;Li Zhu ,&nbsp;Chengsong Wan ,&nbsp;Bao Zhang ,&nbsp;Wei Zhao","doi":"10.1016/j.jobb.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Aerosol transmission is an important disease transmission route and has been especially pertinent to hospital and biosafety laboratories during the SARS-CoV-2 pandemic. The thermal resistance of airborne SARS-CoV-2 is lower than that of <em>Bacillus subtilis</em> spores, which are often used to test the effectiveness of SARS-CoV-2 and other pathogen disinfection methods. Herein, we propose a new method to test the disinfection ability of a flowing air disinfector (a digital electromagnetic induction air heater) using <em>B. subtilis</em> spores. The study provides an alternative air disinfection test method. The new test system combined an aerosol generator and a respiratory filter designed in-house and could effectively recover spores on the filter membrane at the air outlet after passing through the flowing air disinfector. The total number of bacterial spores used in the test was within the range of 5 × 10<sup>5</sup>–5 × 10<sup>6</sup> colony-forming units (CFUs) specified in the technical standard for disinfection. The calculation was based on the calculation method in Air Disinfection Effect Appraisal Test in Technical Standard for Disinfection (2002 Edition). At an air speed of 3.5 m/s, we used a digital electromagnetic induction air heater to disinfect flowing air containing 4.100 × 10<sup>6</sup> CFUs of <em>B. subtilis</em> spores and determined that the minimum disinfection temperature was 350 °C for a killing rate of 99.99%. At 400 °C, additional experiments using higher spore concentrations (4.700 × 10<sup>6</sup> ± 1.871 × 10<sup>5</sup> CFU) and a higher airspeed (4 m/s) showed that the killing rate remained&gt;99.99%. <em>B. subtilis</em> spores, as a biological indicator for testing the efficiency of dry-heat sterilization, were killed by the high temperatures used in this system. The proposed method used to test the flowing air disinfector is simple, stable, and effective. This study provides a reference for the development of test systems that can assess the disinfection ability of flowing air disinfectors.</p></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"5 1","pages":"Pages 32-38"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014499/pdf/","citationCount":"0","resultStr":"{\"title\":\"A simple and effective aerosol pathogen disinfection test for a flowing air disinfector\",\"authors\":\"Xuling Liu ,&nbsp;Zhiran Qin ,&nbsp;Linqing Wang ,&nbsp;Xiaoting Xie ,&nbsp;Yifang Fu ,&nbsp;Jianhai Yu ,&nbsp;Zuxin Liang ,&nbsp;Xiaoen He ,&nbsp;Jingshu Li ,&nbsp;Hong Dai ,&nbsp;Jinxiu Yao ,&nbsp;Qinghua Wu ,&nbsp;Weiwei Xiao ,&nbsp;Li Zhu ,&nbsp;Chengsong Wan ,&nbsp;Bao Zhang ,&nbsp;Wei Zhao\",\"doi\":\"10.1016/j.jobb.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aerosol transmission is an important disease transmission route and has been especially pertinent to hospital and biosafety laboratories during the SARS-CoV-2 pandemic. The thermal resistance of airborne SARS-CoV-2 is lower than that of <em>Bacillus subtilis</em> spores, which are often used to test the effectiveness of SARS-CoV-2 and other pathogen disinfection methods. Herein, we propose a new method to test the disinfection ability of a flowing air disinfector (a digital electromagnetic induction air heater) using <em>B. subtilis</em> spores. The study provides an alternative air disinfection test method. The new test system combined an aerosol generator and a respiratory filter designed in-house and could effectively recover spores on the filter membrane at the air outlet after passing through the flowing air disinfector. The total number of bacterial spores used in the test was within the range of 5 × 10<sup>5</sup>–5 × 10<sup>6</sup> colony-forming units (CFUs) specified in the technical standard for disinfection. The calculation was based on the calculation method in Air Disinfection Effect Appraisal Test in Technical Standard for Disinfection (2002 Edition). At an air speed of 3.5 m/s, we used a digital electromagnetic induction air heater to disinfect flowing air containing 4.100 × 10<sup>6</sup> CFUs of <em>B. subtilis</em> spores and determined that the minimum disinfection temperature was 350 °C for a killing rate of 99.99%. At 400 °C, additional experiments using higher spore concentrations (4.700 × 10<sup>6</sup> ± 1.871 × 10<sup>5</sup> CFU) and a higher airspeed (4 m/s) showed that the killing rate remained&gt;99.99%. <em>B. subtilis</em> spores, as a biological indicator for testing the efficiency of dry-heat sterilization, were killed by the high temperatures used in this system. The proposed method used to test the flowing air disinfector is simple, stable, and effective. This study provides a reference for the development of test systems that can assess the disinfection ability of flowing air disinfectors.</p></div>\",\"PeriodicalId\":52875,\"journal\":{\"name\":\"Journal of Biosafety and Biosecurity\",\"volume\":\"5 1\",\"pages\":\"Pages 32-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014499/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosafety and Biosecurity\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588933823000110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588933823000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在SARS-CoV-2大流行期间,气溶胶传播是一种重要的疾病传播途径,与医院和生物安全实验室尤其相关。空气传播的SARS-CoV-2的耐热性低于枯草芽孢杆菌孢子的耐热性,枯草芽孢杆菌孢子常被用来检验SARS-CoV-2和其他病原体消毒方法的有效性。在此,我们提出了一种使用枯草芽孢杆菌孢子测试流动空气消毒器(数字电磁感应空气加热器)消毒能力的新方法。本研究提供了一种可替代的空气消毒试验方法。新的测试系统结合了一个气溶胶发生器和一个自主设计的呼吸过滤器,在通过流动空气消毒器后,可以有效地回收出风口过滤膜上的孢子。试验使用的细菌孢子总数在消毒技术标准规定的5 × 105 ~ 5 × 106菌落形成单位(CFUs)范围内。计算方法参照2002年版《消毒技术标准》空气消毒效果评价试验中的计算方法。在3.5 m/s风速下,采用数字式电磁感应空气加热器对含有4.100 × 106 CFUs枯草芽孢杆菌孢子的流动空气进行消毒,最低消毒温度为350℃,杀菌率为99.99%。在400℃条件下,采用更高的孢子浓度(4.700 × 106±1.871 × 105 CFU)和更高的空速(4 m/s)进行实验,杀虫率保持在99.99%。枯草芽孢杆菌孢子作为检验干热灭菌效率的生物学指标,在该系统中被高温杀死。所提出的流动空气消毒器测试方法简单、稳定、有效。本研究为流动空气消毒器消毒能力评价测试系统的开发提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A simple and effective aerosol pathogen disinfection test for a flowing air disinfector

A simple and effective aerosol pathogen disinfection test for a flowing air disinfector

A simple and effective aerosol pathogen disinfection test for a flowing air disinfector

Aerosol transmission is an important disease transmission route and has been especially pertinent to hospital and biosafety laboratories during the SARS-CoV-2 pandemic. The thermal resistance of airborne SARS-CoV-2 is lower than that of Bacillus subtilis spores, which are often used to test the effectiveness of SARS-CoV-2 and other pathogen disinfection methods. Herein, we propose a new method to test the disinfection ability of a flowing air disinfector (a digital electromagnetic induction air heater) using B. subtilis spores. The study provides an alternative air disinfection test method. The new test system combined an aerosol generator and a respiratory filter designed in-house and could effectively recover spores on the filter membrane at the air outlet after passing through the flowing air disinfector. The total number of bacterial spores used in the test was within the range of 5 × 105–5 × 106 colony-forming units (CFUs) specified in the technical standard for disinfection. The calculation was based on the calculation method in Air Disinfection Effect Appraisal Test in Technical Standard for Disinfection (2002 Edition). At an air speed of 3.5 m/s, we used a digital electromagnetic induction air heater to disinfect flowing air containing 4.100 × 106 CFUs of B. subtilis spores and determined that the minimum disinfection temperature was 350 °C for a killing rate of 99.99%. At 400 °C, additional experiments using higher spore concentrations (4.700 × 106 ± 1.871 × 105 CFU) and a higher airspeed (4 m/s) showed that the killing rate remained>99.99%. B. subtilis spores, as a biological indicator for testing the efficiency of dry-heat sterilization, were killed by the high temperatures used in this system. The proposed method used to test the flowing air disinfector is simple, stable, and effective. This study provides a reference for the development of test systems that can assess the disinfection ability of flowing air disinfectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biosafety and Biosecurity
Journal of Biosafety and Biosecurity Social Sciences-Linguistics and Language
CiteScore
6.00
自引率
0.00%
发文量
20
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信