Arkaprava Banerjee, Supratik Kar, Souvik Pore, Kunal Roy
{"title":"使用基于机器学习的q-RASAR方法有效预测基于tio2的多组分纳米颗粒的细胞毒性。","authors":"Arkaprava Banerjee, Supratik Kar, Souvik Pore, Kunal Roy","doi":"10.1080/17435390.2023.2186280","DOIUrl":null,"url":null,"abstract":"<p><p>The availability of experimental nanotoxicity data is in general limited which warrants both the use of <i>in silico</i> methods for data gap filling and exploring novel methods for effective modeling. Read-Across Structure-Activity Relationship (RASAR) is an emerging cheminformatic approach that combines the usefulness of a QSAR model and similarity-based Read-Across predictions. In this work, we have generated simple, interpretable, and transferable quantitative-RASAR (q-RASAR) models which can efficiently predict the cytotoxicity of TiO<sub>2</sub>-based multi-component nanoparticles. A data set of 29 TiO<sub>2</sub>-based nanoparticles with specific amounts of noble metal precursors was rationally divided into training and test sets, and the Read-Across-based predictions for the test set were generated. The optimized hyperparameters and the similarity approach, which yield the best predictions, were used to calculate the similarity and error-based RASAR descriptors. A data fusion of the RASAR descriptors with the chemical descriptors was done followed by the best subset feature selection. The final set of selected descriptors was used to develop the q-RASAR models, which were validated using the stringent OECD criteria. Finally, a random forest model was also developed with the selected descriptors, which could efficiently predict the cytotoxicity of TiO<sub>2</sub>-based multi-component nanoparticles superseding previously reported models in the prediction quality thus showing the merits of the q-RASAR approach. To further evaluate the usefulness of the approach, we have applied the q-RASAR approach also to a second cytotoxicity data set of 34 heterogeneous TiO<sub>2</sub>-based nanoparticles which further confirmed the enhancement of external prediction quality of QSAR models after incorporation of RASAR descriptors.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 1","pages":"78-93"},"PeriodicalIF":3.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient predictions of cytotoxicity of TiO<sub>2</sub>-based multi-component nanoparticles using a machine learning-based q-RASAR approach.\",\"authors\":\"Arkaprava Banerjee, Supratik Kar, Souvik Pore, Kunal Roy\",\"doi\":\"10.1080/17435390.2023.2186280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability of experimental nanotoxicity data is in general limited which warrants both the use of <i>in silico</i> methods for data gap filling and exploring novel methods for effective modeling. Read-Across Structure-Activity Relationship (RASAR) is an emerging cheminformatic approach that combines the usefulness of a QSAR model and similarity-based Read-Across predictions. In this work, we have generated simple, interpretable, and transferable quantitative-RASAR (q-RASAR) models which can efficiently predict the cytotoxicity of TiO<sub>2</sub>-based multi-component nanoparticles. A data set of 29 TiO<sub>2</sub>-based nanoparticles with specific amounts of noble metal precursors was rationally divided into training and test sets, and the Read-Across-based predictions for the test set were generated. The optimized hyperparameters and the similarity approach, which yield the best predictions, were used to calculate the similarity and error-based RASAR descriptors. A data fusion of the RASAR descriptors with the chemical descriptors was done followed by the best subset feature selection. The final set of selected descriptors was used to develop the q-RASAR models, which were validated using the stringent OECD criteria. Finally, a random forest model was also developed with the selected descriptors, which could efficiently predict the cytotoxicity of TiO<sub>2</sub>-based multi-component nanoparticles superseding previously reported models in the prediction quality thus showing the merits of the q-RASAR approach. To further evaluate the usefulness of the approach, we have applied the q-RASAR approach also to a second cytotoxicity data set of 34 heterogeneous TiO<sub>2</sub>-based nanoparticles which further confirmed the enhancement of external prediction quality of QSAR models after incorporation of RASAR descriptors.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\"17 1\",\"pages\":\"78-93\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2023.2186280\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2023.2186280","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Efficient predictions of cytotoxicity of TiO2-based multi-component nanoparticles using a machine learning-based q-RASAR approach.
The availability of experimental nanotoxicity data is in general limited which warrants both the use of in silico methods for data gap filling and exploring novel methods for effective modeling. Read-Across Structure-Activity Relationship (RASAR) is an emerging cheminformatic approach that combines the usefulness of a QSAR model and similarity-based Read-Across predictions. In this work, we have generated simple, interpretable, and transferable quantitative-RASAR (q-RASAR) models which can efficiently predict the cytotoxicity of TiO2-based multi-component nanoparticles. A data set of 29 TiO2-based nanoparticles with specific amounts of noble metal precursors was rationally divided into training and test sets, and the Read-Across-based predictions for the test set were generated. The optimized hyperparameters and the similarity approach, which yield the best predictions, were used to calculate the similarity and error-based RASAR descriptors. A data fusion of the RASAR descriptors with the chemical descriptors was done followed by the best subset feature selection. The final set of selected descriptors was used to develop the q-RASAR models, which were validated using the stringent OECD criteria. Finally, a random forest model was also developed with the selected descriptors, which could efficiently predict the cytotoxicity of TiO2-based multi-component nanoparticles superseding previously reported models in the prediction quality thus showing the merits of the q-RASAR approach. To further evaluate the usefulness of the approach, we have applied the q-RASAR approach also to a second cytotoxicity data set of 34 heterogeneous TiO2-based nanoparticles which further confirmed the enhancement of external prediction quality of QSAR models after incorporation of RASAR descriptors.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.