Fredrik Olsson;Kjartan Halvorsen;Anna Cristina Åberg
{"title":"用于量化老年人站立平衡的神经肌肉控制器模型:系统综述","authors":"Fredrik Olsson;Kjartan Halvorsen;Anna Cristina Åberg","doi":"10.1109/RBME.2021.3057673","DOIUrl":null,"url":null,"abstract":"Objective quantification of the balancing mechanisms in humans is strongly needed in health care of older people, yet is largely missing among current clinical balance assessment methods. Hence, the main goal of this literature review is to identify methods that have the potential to meet that need. We searched in the PubMed and IEEE Xplore databases using predefined criteria, screened 1064 articles, and systematically reviewed and categorized methods from 73 studies that deal with identification of neuromuscular controller models of human upright standing from empirical data. These studies were then analyzed with the particular aim to understand to what degree such methods would be useful solutions for assessing the balance of older individuals aged above 60 years. The 16 studies that included an older subject population were especially examined with this in mind. The majority of the reviewed articles focused on research questions related to the general function of human balance control rather than clinical applicability. Further efforts need to be made to adapt these methods for more accessible and mobile technologies and to ensure that the outcomes are valid for balance assessment of a general older population.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/RBME.2021.3057673","citationCount":"4","resultStr":"{\"title\":\"Neuromuscular Controller Models for Quantifying Standing Balance in Older People: A Systematic Review\",\"authors\":\"Fredrik Olsson;Kjartan Halvorsen;Anna Cristina Åberg\",\"doi\":\"10.1109/RBME.2021.3057673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective quantification of the balancing mechanisms in humans is strongly needed in health care of older people, yet is largely missing among current clinical balance assessment methods. Hence, the main goal of this literature review is to identify methods that have the potential to meet that need. We searched in the PubMed and IEEE Xplore databases using predefined criteria, screened 1064 articles, and systematically reviewed and categorized methods from 73 studies that deal with identification of neuromuscular controller models of human upright standing from empirical data. These studies were then analyzed with the particular aim to understand to what degree such methods would be useful solutions for assessing the balance of older individuals aged above 60 years. The 16 studies that included an older subject population were especially examined with this in mind. The majority of the reviewed articles focused on research questions related to the general function of human balance control rather than clinical applicability. Further efforts need to be made to adapt these methods for more accessible and mobile technologies and to ensure that the outcomes are valid for balance assessment of a general older population.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/RBME.2021.3057673\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9350163/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9350163/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Neuromuscular Controller Models for Quantifying Standing Balance in Older People: A Systematic Review
Objective quantification of the balancing mechanisms in humans is strongly needed in health care of older people, yet is largely missing among current clinical balance assessment methods. Hence, the main goal of this literature review is to identify methods that have the potential to meet that need. We searched in the PubMed and IEEE Xplore databases using predefined criteria, screened 1064 articles, and systematically reviewed and categorized methods from 73 studies that deal with identification of neuromuscular controller models of human upright standing from empirical data. These studies were then analyzed with the particular aim to understand to what degree such methods would be useful solutions for assessing the balance of older individuals aged above 60 years. The 16 studies that included an older subject population were especially examined with this in mind. The majority of the reviewed articles focused on research questions related to the general function of human balance control rather than clinical applicability. Further efforts need to be made to adapt these methods for more accessible and mobile technologies and to ensure that the outcomes are valid for balance assessment of a general older population.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.