{"title":"早期生命中的线粒体。","authors":"Ling He, Akhil Maheshwari","doi":"10.2174/1573396319666221221110728","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are highly-dynamic, membrane-bound organelles that generate most of the chemical energy needed to power the biochemical reactions in eukaryotic cells. These organelles also communicate with the nucleus and other cellular structures to help maintain somatic homeostasis, allow cellular adaptation to stress, and help maintain the developmental trajectory. Mitochondria also perform numerous other functions to support metabolic, energetic, and epigenetic regulation in our cells. There is increasing information on various disorders caused by defects in intrinsic mitochondrial or supporting nuclear genes, on different organ systems. In this review, we have summarized the ultrastructural morphology, structural components, our current understanding of the evolution, biogenesis, dynamics, function, clinical manifestations of mitochondrial dysfunction, and future possibilities. The implications of deficits in mitochondrial dynamics and signaling for embryo viability and offspring health are also explored. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.</p>","PeriodicalId":11175,"journal":{"name":"Current Pediatric Reviews","volume":"19 4","pages":"395-416"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mitochondria in Early Life.\",\"authors\":\"Ling He, Akhil Maheshwari\",\"doi\":\"10.2174/1573396319666221221110728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are highly-dynamic, membrane-bound organelles that generate most of the chemical energy needed to power the biochemical reactions in eukaryotic cells. These organelles also communicate with the nucleus and other cellular structures to help maintain somatic homeostasis, allow cellular adaptation to stress, and help maintain the developmental trajectory. Mitochondria also perform numerous other functions to support metabolic, energetic, and epigenetic regulation in our cells. There is increasing information on various disorders caused by defects in intrinsic mitochondrial or supporting nuclear genes, on different organ systems. In this review, we have summarized the ultrastructural morphology, structural components, our current understanding of the evolution, biogenesis, dynamics, function, clinical manifestations of mitochondrial dysfunction, and future possibilities. The implications of deficits in mitochondrial dynamics and signaling for embryo viability and offspring health are also explored. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.</p>\",\"PeriodicalId\":11175,\"journal\":{\"name\":\"Current Pediatric Reviews\",\"volume\":\"19 4\",\"pages\":\"395-416\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pediatric Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1573396319666221221110728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pediatric Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573396319666221221110728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PEDIATRICS","Score":null,"Total":0}
Mitochondria are highly-dynamic, membrane-bound organelles that generate most of the chemical energy needed to power the biochemical reactions in eukaryotic cells. These organelles also communicate with the nucleus and other cellular structures to help maintain somatic homeostasis, allow cellular adaptation to stress, and help maintain the developmental trajectory. Mitochondria also perform numerous other functions to support metabolic, energetic, and epigenetic regulation in our cells. There is increasing information on various disorders caused by defects in intrinsic mitochondrial or supporting nuclear genes, on different organ systems. In this review, we have summarized the ultrastructural morphology, structural components, our current understanding of the evolution, biogenesis, dynamics, function, clinical manifestations of mitochondrial dysfunction, and future possibilities. The implications of deficits in mitochondrial dynamics and signaling for embryo viability and offspring health are also explored. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.
期刊介绍:
Current Pediatric Reviews publishes frontier reviews on all the latest advances in pediatric medicine. The journal’s aim is to publish the highest quality review articles dedicated to clinical research in the field. The journal is essential reading for all researchers and clinicians in pediatric medicine.