Kui Wu, Yuanyuan Wang, Hong Yang, Yihuan Chen, Kunyan Lu, Yong Wu, Chunxia Liu, Haixin Zhang, Hanyu Meng, Qian Yu*, Yanxia Zhang* and Zhenya Shen*,
{"title":"含基质细胞衍生因子1的可注射脱细胞细胞外基质水凝胶促进心肌梗死后移植心肌细胞的植入和功能再生","authors":"Kui Wu, Yuanyuan Wang, Hong Yang, Yihuan Chen, Kunyan Lu, Yong Wu, Chunxia Liu, Haixin Zhang, Hanyu Meng, Qian Yu*, Yanxia Zhang* and Zhenya Shen*, ","doi":"10.1021/acsami.2c16682","DOIUrl":null,"url":null,"abstract":"<p >Transplantation of exogenous cardiomyocytes (CMs) is a hopeful method to treat myocardial infarction (MI). However, its clinical application still remains challenging due to low retention and survival rates of the transplanted cells. Herein, a stromal cell-derived factor 1 (SDF-1)-loaded injectable hydrogel based on a decellularized porcine extracellular matrix (dECM) is developed to encapsulate and deliver CMs locally to the infarct area of the heart. The soluble porcine cardiac dECM is composed of similar components such as the human cardiac ECM, which could be self-assembled into a nanofibrous hydrogel at physiological temperature to improve the retention of transplanted CMs. Furthermore, the chemokine SDF-1 could recruit endogenous cells to promote angiogenesis, mitigating the ischemic microenvironment and improving the survival of CMs. The results <i>in vitro</i> show that this composite hydrogel exhibits good biocompatibility, anti-apoptosis property, and chemotactic effects for mesenchymal stromal cells and endothelial cells through SDF-1-CXCR4 axis. Moreover, intramyocardial injection of this composite hydrogel to the infarcted area leads to the promotion of angiogenesis and inhibition of fibrosis, reducing the infarction size and improving the cardiac function. The combination of natural biomaterials, exogenous cells, and bioactive factors shows potential for MI treatment in the clinical application.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 2","pages":"2578–2589"},"PeriodicalIF":8.2000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Injectable Decellularized Extracellular Matrix Hydrogel Containing Stromal Cell-Derived Factor 1 Promotes Transplanted Cardiomyocyte Engraftment and Functional Regeneration after Myocardial Infarction\",\"authors\":\"Kui Wu, Yuanyuan Wang, Hong Yang, Yihuan Chen, Kunyan Lu, Yong Wu, Chunxia Liu, Haixin Zhang, Hanyu Meng, Qian Yu*, Yanxia Zhang* and Zhenya Shen*, \",\"doi\":\"10.1021/acsami.2c16682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transplantation of exogenous cardiomyocytes (CMs) is a hopeful method to treat myocardial infarction (MI). However, its clinical application still remains challenging due to low retention and survival rates of the transplanted cells. Herein, a stromal cell-derived factor 1 (SDF-1)-loaded injectable hydrogel based on a decellularized porcine extracellular matrix (dECM) is developed to encapsulate and deliver CMs locally to the infarct area of the heart. The soluble porcine cardiac dECM is composed of similar components such as the human cardiac ECM, which could be self-assembled into a nanofibrous hydrogel at physiological temperature to improve the retention of transplanted CMs. Furthermore, the chemokine SDF-1 could recruit endogenous cells to promote angiogenesis, mitigating the ischemic microenvironment and improving the survival of CMs. The results <i>in vitro</i> show that this composite hydrogel exhibits good biocompatibility, anti-apoptosis property, and chemotactic effects for mesenchymal stromal cells and endothelial cells through SDF-1-CXCR4 axis. Moreover, intramyocardial injection of this composite hydrogel to the infarcted area leads to the promotion of angiogenesis and inhibition of fibrosis, reducing the infarction size and improving the cardiac function. The combination of natural biomaterials, exogenous cells, and bioactive factors shows potential for MI treatment in the clinical application.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"15 2\",\"pages\":\"2578–2589\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.2c16682\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.2c16682","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Injectable Decellularized Extracellular Matrix Hydrogel Containing Stromal Cell-Derived Factor 1 Promotes Transplanted Cardiomyocyte Engraftment and Functional Regeneration after Myocardial Infarction
Transplantation of exogenous cardiomyocytes (CMs) is a hopeful method to treat myocardial infarction (MI). However, its clinical application still remains challenging due to low retention and survival rates of the transplanted cells. Herein, a stromal cell-derived factor 1 (SDF-1)-loaded injectable hydrogel based on a decellularized porcine extracellular matrix (dECM) is developed to encapsulate and deliver CMs locally to the infarct area of the heart. The soluble porcine cardiac dECM is composed of similar components such as the human cardiac ECM, which could be self-assembled into a nanofibrous hydrogel at physiological temperature to improve the retention of transplanted CMs. Furthermore, the chemokine SDF-1 could recruit endogenous cells to promote angiogenesis, mitigating the ischemic microenvironment and improving the survival of CMs. The results in vitro show that this composite hydrogel exhibits good biocompatibility, anti-apoptosis property, and chemotactic effects for mesenchymal stromal cells and endothelial cells through SDF-1-CXCR4 axis. Moreover, intramyocardial injection of this composite hydrogel to the infarcted area leads to the promotion of angiogenesis and inhibition of fibrosis, reducing the infarction size and improving the cardiac function. The combination of natural biomaterials, exogenous cells, and bioactive factors shows potential for MI treatment in the clinical application.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.