慢性肾病和高尿酸血症患者的非靶向血清代谢组学分析。

IF 6.5 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wen-Yu Yang, Jun Wang, Xiao-Han Li, Bei Xu, Yu-Wei Yang, Lin Yu, Bin Zhang, Jia-Fu Feng
{"title":"慢性肾病和高尿酸血症患者的非靶向血清代谢组学分析。","authors":"Wen-Yu Yang, Jun Wang, Xiao-Han Li, Bei Xu, Yu-Wei Yang, Lin Yu, Bin Zhang, Jia-Fu Feng","doi":"10.1080/02648725.2023.2204715","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperuricemia (HUA) is a common complication of chronic kidney disease (CKD). Conversely, HUA can promote the disease progression of CKD. However, the molecular mechanism of HUA in CKD development remains unclear. In the present study, we applied ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the serum metabolite profiling of 47 HUA patients, 41 non-hyperuricemic CKD (NUA-CKD) patients, and 51 CKD and HUA (HUA-CKD) patients, and then subjected to multivariate statistical analysis, metabolic pathway analysis and diagnostic performance evaluation. Metabolic profiling of serums showed that 40 differential metabolites (fold-change threshold (FC) > 1.5 or<2/3, variable importance in projection (VIP) > 1, and <i>p</i> < 0.05) were screened in HUA-CKD and HUA patients, and 24 differential metabolites (FC > 1.2 or<0.83, VIP>1, and <i>p</i> < 0.05) were screened in HUA-CKD and NUA-CKD patients. According to the analysis of metabolic pathways, significant changes existed in three metabolic pathways (compared with the HUA group) and two metabolic pathways (compared with the HUA-CKD group) in HUA-CKD patients. Glycerophospholipid metabolism was a significant pathway in HUA-CKD. Our findings show that the metabolic disorder in HUA-CKD patients was more serious than that in NUA-CKD or HUA patients. A theoretical basis is provided for HUA to accelerate CKD progress.</p>","PeriodicalId":55355,"journal":{"name":"Biotechnology & Genetic Engineering Reviews","volume":" ","pages":"4013-4039"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of non-targeted serum metabolomics in patients with chronic kidney disease and hyperuricemia.\",\"authors\":\"Wen-Yu Yang, Jun Wang, Xiao-Han Li, Bei Xu, Yu-Wei Yang, Lin Yu, Bin Zhang, Jia-Fu Feng\",\"doi\":\"10.1080/02648725.2023.2204715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperuricemia (HUA) is a common complication of chronic kidney disease (CKD). Conversely, HUA can promote the disease progression of CKD. However, the molecular mechanism of HUA in CKD development remains unclear. In the present study, we applied ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the serum metabolite profiling of 47 HUA patients, 41 non-hyperuricemic CKD (NUA-CKD) patients, and 51 CKD and HUA (HUA-CKD) patients, and then subjected to multivariate statistical analysis, metabolic pathway analysis and diagnostic performance evaluation. Metabolic profiling of serums showed that 40 differential metabolites (fold-change threshold (FC) > 1.5 or<2/3, variable importance in projection (VIP) > 1, and <i>p</i> < 0.05) were screened in HUA-CKD and HUA patients, and 24 differential metabolites (FC > 1.2 or<0.83, VIP>1, and <i>p</i> < 0.05) were screened in HUA-CKD and NUA-CKD patients. According to the analysis of metabolic pathways, significant changes existed in three metabolic pathways (compared with the HUA group) and two metabolic pathways (compared with the HUA-CKD group) in HUA-CKD patients. Glycerophospholipid metabolism was a significant pathway in HUA-CKD. Our findings show that the metabolic disorder in HUA-CKD patients was more serious than that in NUA-CKD or HUA patients. A theoretical basis is provided for HUA to accelerate CKD progress.</p>\",\"PeriodicalId\":55355,\"journal\":{\"name\":\"Biotechnology & Genetic Engineering Reviews\",\"volume\":\" \",\"pages\":\"4013-4039\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology & Genetic Engineering Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/02648725.2023.2204715\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Genetic Engineering Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02648725.2023.2204715","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高尿酸血症(HUA)是慢性肾脏病(CKD)的常见并发症。相反,高尿酸血症会促进慢性肾脏病的病情发展。然而,HUA 在 CKD 发展过程中的分子机制仍不清楚。在本研究中,我们应用超高效液相色谱-串联质谱(UPLC-MS/MS)分析了47例HUA患者、41例非高尿酸血症CKD(NUA-CKD)患者和51例CKD合并HUA(HUA-CKD)患者的血清代谢物谱,然后进行了多变量统计分析、代谢通路分析和诊断性能评估。血清代谢图谱分析表明,40 种差异代谢物(折变阈值 (FC) > 1.5 或 1,且 p 1.2 或 1,且 p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of non-targeted serum metabolomics in patients with chronic kidney disease and hyperuricemia.

Hyperuricemia (HUA) is a common complication of chronic kidney disease (CKD). Conversely, HUA can promote the disease progression of CKD. However, the molecular mechanism of HUA in CKD development remains unclear. In the present study, we applied ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the serum metabolite profiling of 47 HUA patients, 41 non-hyperuricemic CKD (NUA-CKD) patients, and 51 CKD and HUA (HUA-CKD) patients, and then subjected to multivariate statistical analysis, metabolic pathway analysis and diagnostic performance evaluation. Metabolic profiling of serums showed that 40 differential metabolites (fold-change threshold (FC) > 1.5 or<2/3, variable importance in projection (VIP) > 1, and p < 0.05) were screened in HUA-CKD and HUA patients, and 24 differential metabolites (FC > 1.2 or<0.83, VIP>1, and p < 0.05) were screened in HUA-CKD and NUA-CKD patients. According to the analysis of metabolic pathways, significant changes existed in three metabolic pathways (compared with the HUA group) and two metabolic pathways (compared with the HUA-CKD group) in HUA-CKD patients. Glycerophospholipid metabolism was a significant pathway in HUA-CKD. Our findings show that the metabolic disorder in HUA-CKD patients was more serious than that in NUA-CKD or HUA patients. A theoretical basis is provided for HUA to accelerate CKD progress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology & Genetic Engineering Reviews
Biotechnology & Genetic Engineering Reviews BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.50
自引率
3.10%
发文量
33
期刊介绍: Biotechnology & Genetic Engineering Reviews publishes major invited review articles covering important developments in industrial, agricultural and medical applications of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信