1型糖尿病和饮食诱发的肥胖使C57BL/6J小鼠易受PM2.5诱发的肺损伤影响:一项比较研究。

IF 7.2 1区 医学 Q1 TOXICOLOGY
Shen Chen, Miao Li, Rui Zhang, Lizhu Ye, Yue Jiang, Xinhang Jiang, Hui Peng, Ziwei Wang, Zhanyu Guo, Liping Chen, Rong Zhang, Yujie Niu, Michael Aschner, Daochuan Li, Wen Chen
{"title":"1型糖尿病和饮食诱发的肥胖使C57BL/6J小鼠易受PM2.5诱发的肺损伤影响:一项比较研究。","authors":"Shen Chen, Miao Li, Rui Zhang, Lizhu Ye, Yue Jiang, Xinhang Jiang, Hui Peng, Ziwei Wang, Zhanyu Guo, Liping Chen, Rong Zhang, Yujie Niu, Michael Aschner, Daochuan Li, Wen Chen","doi":"10.1186/s12989-023-00526-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated.</p><p><strong>Results: </strong>Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM<sub>2.5</sub> concentration of 95.77 µg/m<sup>3</sup>. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-β-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice.</p><p><strong>Conclusions: </strong>These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM<sub>2.5</sub>-induced lung injury: a comparative study.\",\"authors\":\"Shen Chen, Miao Li, Rui Zhang, Lizhu Ye, Yue Jiang, Xinhang Jiang, Hui Peng, Ziwei Wang, Zhanyu Guo, Liping Chen, Rong Zhang, Yujie Niu, Michael Aschner, Daochuan Li, Wen Chen\",\"doi\":\"10.1186/s12989-023-00526-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated.</p><p><strong>Results: </strong>Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM<sub>2.5</sub> concentration of 95.77 µg/m<sup>3</sup>. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-β-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice.</p><p><strong>Conclusions: </strong>These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-023-00526-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-023-00526-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:预先存在的代谢性疾病可能使人容易受到颗粒物(PM)诱发的不良健康影响。然而,各种代谢性疾病对可吸入颗粒物诱发的肺损伤的易感性差异及其内在机制尚未完全阐明:结果:1型糖尿病(T1D)小鼠模型是通过注射链脲佐菌素建立的,而饮食诱导肥胖(DIO)小鼠模型是通过在实验前6周和整个实验期间喂食45%的高脂肪饮食建立的。小鼠在中国石家庄市的真实环境中暴露于PM2.5,为期4周,PM2.5的平均浓度为95.77微克/立方米。通过转录组学分析,对小鼠的肺部和全身损伤进行了评估,并探讨了其潜在机制。与正常饮食(ND)喂养的小鼠相比,T1D小鼠表现出严重的高血糖,血糖为350 mg/dL,而DIO小鼠则表现出中度肥胖和明显的血脂异常,血糖略微升高至180 mg/dL。T1D和DIO小鼠易受PM诱导的肺损伤,表现为炎症变化,如间质中性粒细胞浸润和肺泡间隔增厚。值得注意的是,T1D和DIO小鼠的急性肺损伤评分分别比ND喂养的小鼠高79.57%和48.47%。肺转录组分析表明,暴露于可吸入颗粒物的易感性增加与葡萄糖和脂质代谢、炎症反应、氧化应激、细胞衰老和组织重塑等多个通路的扰动有关。功能实验证实,在暴露于 PM 的 T1D 小鼠肺部,巨噬细胞(F4/80)、脂质过氧化(4-HNE)、细胞衰老(SA-β-gal)和气道修复(CCSP)等生物标志物的变化最为明显。此外,与异生物代谢相关的通路也显示出代谢状态和组织特异性的扰动模式。接触可吸入颗粒物后,T1D小鼠肺部的核受体(NR)通路明显激活,谷胱甘肽(GSH)介导的解毒通路受到抑制,T1D小鼠肝脏的NR通路显著上调:这些差异可能导致T1D小鼠和DIO小鼠对暴露于可吸入颗粒物的易感性不同。这些发现为评估代谢性疾病人群接触可吸入颗粒物的健康风险提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM<sub>2.5</sub>-induced lung injury: a comparative study.

Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM<sub>2.5</sub>-induced lung injury: a comparative study.

Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM<sub>2.5</sub>-induced lung injury: a comparative study.

Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM2.5-induced lung injury: a comparative study.

Background: Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated.

Results: Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-β-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice.

Conclusions: These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.90
自引率
4.00%
发文量
69
审稿时长
6 months
期刊介绍: Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信