{"title":"无定形二氧化硅载体MnO2-Fe3O4催化剂的合成:一种降解水中活性蓝-19的Fenton试剂。","authors":"Nguyen Manh Ha, Tran Thi Huong, Ninh The Son","doi":"10.1080/10934529.2023.2198477","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a new Fenton's reagent was synthesized via two steps: (1) the dispersed Fe<sub>3</sub>O<sub>4</sub> nanoparticles were immobilized on the surface of the SiO<sub>2</sub> carrier via the precipitation process, and (2) the MnO<sub>2</sub> nano-sheets were coated on the surface of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> via hydrothermal method. The SiO<sub>2</sub> carrier has been synthetically utilized from Vietnamese rice husk. The successful formation of the MnO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> composite has been analytically characterized by the XRD (X-ray diffraction), SEM (scanning electron microscope), EDS (energy dispersive spectrometry)-mapping, FTIR (Fourier transform infrared), S<sub>BET</sub> (Brunauer-Emmett-Teller specific surface area), and adsorption/desorption isotherms. This Fenton system was employed to catalyze degradation process of the reactive-blue 19 (RB19) with approximately 100% of removal efficiency after 25 min at the optimal condition of 0.15 g/100 mL of catalyst dosage, pH = 3, and the H<sub>2</sub>O<sub>2</sub> concentration of 3 mL/100 mL. Moreover, the catalyst could be reused at least six times with high catalytic activity that was more than 90%. In conclusion, this study showed that the mesoporous MnO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> composite has a great potential for the removal application of dyes from wastewater, and the application of Vietnam rice husk in environmental treatment was developed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of the MnO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> catalyst support on amorphous silica: a new Fenton's reagent in the degradation of the reactive blue-19 in aqueous solution.\",\"authors\":\"Nguyen Manh Ha, Tran Thi Huong, Ninh The Son\",\"doi\":\"10.1080/10934529.2023.2198477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a new Fenton's reagent was synthesized via two steps: (1) the dispersed Fe<sub>3</sub>O<sub>4</sub> nanoparticles were immobilized on the surface of the SiO<sub>2</sub> carrier via the precipitation process, and (2) the MnO<sub>2</sub> nano-sheets were coated on the surface of Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> via hydrothermal method. The SiO<sub>2</sub> carrier has been synthetically utilized from Vietnamese rice husk. The successful formation of the MnO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> composite has been analytically characterized by the XRD (X-ray diffraction), SEM (scanning electron microscope), EDS (energy dispersive spectrometry)-mapping, FTIR (Fourier transform infrared), S<sub>BET</sub> (Brunauer-Emmett-Teller specific surface area), and adsorption/desorption isotherms. This Fenton system was employed to catalyze degradation process of the reactive-blue 19 (RB19) with approximately 100% of removal efficiency after 25 min at the optimal condition of 0.15 g/100 mL of catalyst dosage, pH = 3, and the H<sub>2</sub>O<sub>2</sub> concentration of 3 mL/100 mL. Moreover, the catalyst could be reused at least six times with high catalytic activity that was more than 90%. In conclusion, this study showed that the mesoporous MnO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> composite has a great potential for the removal application of dyes from wastewater, and the application of Vietnam rice husk in environmental treatment was developed.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2198477\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2198477","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of the MnO2-Fe3O4 catalyst support on amorphous silica: a new Fenton's reagent in the degradation of the reactive blue-19 in aqueous solution.
In this study, a new Fenton's reagent was synthesized via two steps: (1) the dispersed Fe3O4 nanoparticles were immobilized on the surface of the SiO2 carrier via the precipitation process, and (2) the MnO2 nano-sheets were coated on the surface of Fe3O4/SiO2 via hydrothermal method. The SiO2 carrier has been synthetically utilized from Vietnamese rice husk. The successful formation of the MnO2-Fe3O4/SiO2 composite has been analytically characterized by the XRD (X-ray diffraction), SEM (scanning electron microscope), EDS (energy dispersive spectrometry)-mapping, FTIR (Fourier transform infrared), SBET (Brunauer-Emmett-Teller specific surface area), and adsorption/desorption isotherms. This Fenton system was employed to catalyze degradation process of the reactive-blue 19 (RB19) with approximately 100% of removal efficiency after 25 min at the optimal condition of 0.15 g/100 mL of catalyst dosage, pH = 3, and the H2O2 concentration of 3 mL/100 mL. Moreover, the catalyst could be reused at least six times with high catalytic activity that was more than 90%. In conclusion, this study showed that the mesoporous MnO2-Fe3O4/SiO2 composite has a great potential for the removal application of dyes from wastewater, and the application of Vietnam rice husk in environmental treatment was developed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.