Ahmed Al Harraq, Philip J. Brahana, Olivia Arcemont, Donghui Zhang, Kalliat T. Valsaraj and Bhuvnesh Bharti*,
{"title":"风化对微塑料分散性和污染物吸收能力的影响","authors":"Ahmed Al Harraq, Philip J. Brahana, Olivia Arcemont, Donghui Zhang, Kalliat T. Valsaraj and Bhuvnesh Bharti*, ","doi":"10.1021/acsenvironau.2c00036","DOIUrl":null,"url":null,"abstract":"<p >Microplastics are ubiquitous in the environment, leading to a new form of plastic pollution crisis, which has reached an alarming level worldwide. Micron and nanoscale plastics may get integrated into ecological cycles with detrimental effects on various ecosystems. Commodity plastics are widely considered to be chemically inert, and alterations in their surface properties due to environmental weathering are often overlooked. This lack of knowledge on the dynamic changes in the surface chemistry and properties of (micro)plastics has impeded their life-cycle analysis and prediction of their fate in the environment. Through simulated weathering experiments, we delineate the role of sunlight in modifying the physicochemical properties of microplastics. Within 10 days of accelerated weathering, microplastics become dramatically more dispersible in the water column and can more than double the surface uptake of common chemical pollutants, such as malachite green and lead ions. The study provides the basis for identifying the elusive link between the surface properties of microplastics and their fate in the environment.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673469/pdf/","citationCount":"7","resultStr":"{\"title\":\"Effects of Weathering on Microplastic Dispersibility and Pollutant Uptake Capacity\",\"authors\":\"Ahmed Al Harraq, Philip J. Brahana, Olivia Arcemont, Donghui Zhang, Kalliat T. Valsaraj and Bhuvnesh Bharti*, \",\"doi\":\"10.1021/acsenvironau.2c00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microplastics are ubiquitous in the environment, leading to a new form of plastic pollution crisis, which has reached an alarming level worldwide. Micron and nanoscale plastics may get integrated into ecological cycles with detrimental effects on various ecosystems. Commodity plastics are widely considered to be chemically inert, and alterations in their surface properties due to environmental weathering are often overlooked. This lack of knowledge on the dynamic changes in the surface chemistry and properties of (micro)plastics has impeded their life-cycle analysis and prediction of their fate in the environment. Through simulated weathering experiments, we delineate the role of sunlight in modifying the physicochemical properties of microplastics. Within 10 days of accelerated weathering, microplastics become dramatically more dispersible in the water column and can more than double the surface uptake of common chemical pollutants, such as malachite green and lead ions. The study provides the basis for identifying the elusive link between the surface properties of microplastics and their fate in the environment.</p>\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673469/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenvironau.2c00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.2c00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effects of Weathering on Microplastic Dispersibility and Pollutant Uptake Capacity
Microplastics are ubiquitous in the environment, leading to a new form of plastic pollution crisis, which has reached an alarming level worldwide. Micron and nanoscale plastics may get integrated into ecological cycles with detrimental effects on various ecosystems. Commodity plastics are widely considered to be chemically inert, and alterations in their surface properties due to environmental weathering are often overlooked. This lack of knowledge on the dynamic changes in the surface chemistry and properties of (micro)plastics has impeded their life-cycle analysis and prediction of their fate in the environment. Through simulated weathering experiments, we delineate the role of sunlight in modifying the physicochemical properties of microplastics. Within 10 days of accelerated weathering, microplastics become dramatically more dispersible in the water column and can more than double the surface uptake of common chemical pollutants, such as malachite green and lead ions. The study provides the basis for identifying the elusive link between the surface properties of microplastics and their fate in the environment.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management