气相计算光谱学:生命分子砖块的挑战。

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Vincenzo Barone, Cristina Puzzarini
{"title":"气相计算光谱学:生命分子砖块的挑战。","authors":"Vincenzo Barone,&nbsp;Cristina Puzzarini","doi":"10.1146/annurev-physchem-082720-103845","DOIUrl":null,"url":null,"abstract":"<p><p>Gas-phase molecular spectroscopy is a natural playground for accurate quantum-chemical computations. However, the molecular bricks of life (e.g., DNA bases or amino acids) are challenging systems because of the unfavorable scaling of quantum-chemical models with the molecular size (active electrons) and/or the presence of large-amplitude internal motions. From the theoretical point of view, both aspects prevent the brute-force use of very accurate but very expensive state-of-the-art quantum-chemical methodologies. From the experimental point of view, both features lead to congested gas-phase spectra, whose assignment and interpretation are not at all straightforward. Based on these premises, this review focuses on the current status and perspectives of the fully a priori prediction of the spectral signatures of medium-sized molecules (containing up to two dozen atoms) in the gas phase with special reference to rotational and vibrational spectroscopies of some representative molecular bricks of life.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Gas-Phase Computational Spectroscopy: The Challenge of the Molecular Bricks of Life.\",\"authors\":\"Vincenzo Barone,&nbsp;Cristina Puzzarini\",\"doi\":\"10.1146/annurev-physchem-082720-103845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gas-phase molecular spectroscopy is a natural playground for accurate quantum-chemical computations. However, the molecular bricks of life (e.g., DNA bases or amino acids) are challenging systems because of the unfavorable scaling of quantum-chemical models with the molecular size (active electrons) and/or the presence of large-amplitude internal motions. From the theoretical point of view, both aspects prevent the brute-force use of very accurate but very expensive state-of-the-art quantum-chemical methodologies. From the experimental point of view, both features lead to congested gas-phase spectra, whose assignment and interpretation are not at all straightforward. Based on these premises, this review focuses on the current status and perspectives of the fully a priori prediction of the spectral signatures of medium-sized molecules (containing up to two dozen atoms) in the gas phase with special reference to rotational and vibrational spectroscopies of some representative molecular bricks of life.</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-082720-103845\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082720-103845","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 9

摘要

气相分子光谱是精确量子化学计算的天然游乐场。然而,生命的分子砖块(例如,DNA碱基或氨基酸)是具有挑战性的系统,因为量子化学模型与分子大小(活性电子)和/或大振幅内部运动的存在不利的缩放。从理论的角度来看,这两个方面都防止了非常精确但非常昂贵的最先进的量子化学方法的粗暴使用。从实验的角度来看,这两个特征导致气相光谱拥挤,其分配和解释并不简单。基于这些前提,本文综述了气相中中等大小分子(含20多个原子)光谱特征的完全先验预测的现状和前景,并特别提到了一些具有代表性的生命分子砖的旋转和振动光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas-Phase Computational Spectroscopy: The Challenge of the Molecular Bricks of Life.

Gas-phase molecular spectroscopy is a natural playground for accurate quantum-chemical computations. However, the molecular bricks of life (e.g., DNA bases or amino acids) are challenging systems because of the unfavorable scaling of quantum-chemical models with the molecular size (active electrons) and/or the presence of large-amplitude internal motions. From the theoretical point of view, both aspects prevent the brute-force use of very accurate but very expensive state-of-the-art quantum-chemical methodologies. From the experimental point of view, both features lead to congested gas-phase spectra, whose assignment and interpretation are not at all straightforward. Based on these premises, this review focuses on the current status and perspectives of the fully a priori prediction of the spectral signatures of medium-sized molecules (containing up to two dozen atoms) in the gas phase with special reference to rotational and vibrational spectroscopies of some representative molecular bricks of life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信