Shuainan Huang, Jiahui Zhang, Hua Wan, Kang Wang, Jiayi Wu, Yue Cao, Li Hu, Yanfang Yu, Hao Sun, Youjia Yu, Jie Wang and Feng Chen
{"title":"血浆细胞外囊泡microRNA-208b-3p和microRNA-143-3p作为预测急性冠状动脉综合征心源性猝死的新生物标志物","authors":"Shuainan Huang, Jiahui Zhang, Hua Wan, Kang Wang, Jiayi Wu, Yue Cao, Li Hu, Yanfang Yu, Hao Sun, Youjia Yu, Jie Wang and Feng Chen","doi":"10.1039/D2MO00257D","DOIUrl":null,"url":null,"abstract":"<p >Acute coronary syndrome (ACS) occurs as a result of myocardial ischemia that can give rise to a variety of acute cardiovascular events, including arrhythmia, heart failure and sudden cardiac death (SCD). Currently, there are challenges and insufficient innovations regarding early diagnosis and therapeutic approaches within ACS patients experiencing SCD. Plasma extracellular vesicles (EVs) might serve as biomarkers of many diseases depending on the biological molecules of their cargo, such as miRNAs. This study aims to identify the plasma EVs containing miRNAs as novel biomarkers for the prediction of SCD in ACS patients. A total of 39 ACS patients experiencing SCD and 39 healthy control individuals (HC) were enrolled, among which 9 samples in each group were randomly selected as testing groups for miRNA sequencing in plasma EVs, and the remaining samples were assigned to the validation group. The top 10 significant expression miRNAs were verified by the real-time quantitative polymerase chain reaction. Upregulation of miR-208b-3p, miR-143-3p, miR-145-3p and miR-152-3p, and down-regulation of miR-183-5p were further validated in the validation group. Spearman's correlation analysis and the receiver operating characteristic (ROC) curve showed that both miR-208b-3p and miR-143-3p levels were positively correlated with myoglobin (MYO), and their predictive power for SCD was confirmed. In conclusion, our findings indicate that plasma EVs miR-208b-3p and miR-143-3p may serve as promising biomarkers in predicting SCD in patients with ACS, as well as postmortem forensic diagnosis of the cause of death due to ACS.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 3","pages":" 262-273"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma extracellular vesicles microRNA-208b-3p and microRNA-143-3p as novel biomarkers for sudden cardiac death prediction in acute coronary syndrome†\",\"authors\":\"Shuainan Huang, Jiahui Zhang, Hua Wan, Kang Wang, Jiayi Wu, Yue Cao, Li Hu, Yanfang Yu, Hao Sun, Youjia Yu, Jie Wang and Feng Chen\",\"doi\":\"10.1039/D2MO00257D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Acute coronary syndrome (ACS) occurs as a result of myocardial ischemia that can give rise to a variety of acute cardiovascular events, including arrhythmia, heart failure and sudden cardiac death (SCD). Currently, there are challenges and insufficient innovations regarding early diagnosis and therapeutic approaches within ACS patients experiencing SCD. Plasma extracellular vesicles (EVs) might serve as biomarkers of many diseases depending on the biological molecules of their cargo, such as miRNAs. This study aims to identify the plasma EVs containing miRNAs as novel biomarkers for the prediction of SCD in ACS patients. A total of 39 ACS patients experiencing SCD and 39 healthy control individuals (HC) were enrolled, among which 9 samples in each group were randomly selected as testing groups for miRNA sequencing in plasma EVs, and the remaining samples were assigned to the validation group. The top 10 significant expression miRNAs were verified by the real-time quantitative polymerase chain reaction. Upregulation of miR-208b-3p, miR-143-3p, miR-145-3p and miR-152-3p, and down-regulation of miR-183-5p were further validated in the validation group. Spearman's correlation analysis and the receiver operating characteristic (ROC) curve showed that both miR-208b-3p and miR-143-3p levels were positively correlated with myoglobin (MYO), and their predictive power for SCD was confirmed. In conclusion, our findings indicate that plasma EVs miR-208b-3p and miR-143-3p may serve as promising biomarkers in predicting SCD in patients with ACS, as well as postmortem forensic diagnosis of the cause of death due to ACS.</p>\",\"PeriodicalId\":19065,\"journal\":{\"name\":\"Molecular omics\",\"volume\":\" 3\",\"pages\":\" 262-273\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular omics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d2mo00257d\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d2mo00257d","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Plasma extracellular vesicles microRNA-208b-3p and microRNA-143-3p as novel biomarkers for sudden cardiac death prediction in acute coronary syndrome†
Acute coronary syndrome (ACS) occurs as a result of myocardial ischemia that can give rise to a variety of acute cardiovascular events, including arrhythmia, heart failure and sudden cardiac death (SCD). Currently, there are challenges and insufficient innovations regarding early diagnosis and therapeutic approaches within ACS patients experiencing SCD. Plasma extracellular vesicles (EVs) might serve as biomarkers of many diseases depending on the biological molecules of their cargo, such as miRNAs. This study aims to identify the plasma EVs containing miRNAs as novel biomarkers for the prediction of SCD in ACS patients. A total of 39 ACS patients experiencing SCD and 39 healthy control individuals (HC) were enrolled, among which 9 samples in each group were randomly selected as testing groups for miRNA sequencing in plasma EVs, and the remaining samples were assigned to the validation group. The top 10 significant expression miRNAs were verified by the real-time quantitative polymerase chain reaction. Upregulation of miR-208b-3p, miR-143-3p, miR-145-3p and miR-152-3p, and down-regulation of miR-183-5p were further validated in the validation group. Spearman's correlation analysis and the receiver operating characteristic (ROC) curve showed that both miR-208b-3p and miR-143-3p levels were positively correlated with myoglobin (MYO), and their predictive power for SCD was confirmed. In conclusion, our findings indicate that plasma EVs miR-208b-3p and miR-143-3p may serve as promising biomarkers in predicting SCD in patients with ACS, as well as postmortem forensic diagnosis of the cause of death due to ACS.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.