等离子体纳米结构的光热化机制:对稳态的洞察。

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Shengxiang Wu, Matthew Sheldon
{"title":"等离子体纳米结构的光热化机制:对稳态的洞察。","authors":"Shengxiang Wu,&nbsp;Matthew Sheldon","doi":"10.1146/annurev-physchem-062422-014911","DOIUrl":null,"url":null,"abstract":"<p><p>Localized surface plasmon resonances (LSPRs) in metallic nanostructures result in subwavelength optical confinement that enhances light-matter interactions, for example, aiding the sensitivity of surface spectroscopies. The dissipation of surface plasmons as electronic and vibrational excitations sets the limit for field confinement but also provides opportunities for photochemistry, photocatalysis, and photothermal heating. Optimization for either goal requires a deeper understanding of this photothermalization process. In this review, we focus on recent insights into the physics and dynamics governing photothermalization of LSPRs in metallic nanostructures, emphasizing comparisons between the steady-state behavior and ultrafast time-resolved studies. The differences between these regimes inform how to best optimize plasmonic systems for applications under relatively low-intensity, continuous illumination (e.g., sunlight).</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanisms of Photothermalization in Plasmonic Nanostructures: Insights into the Steady State.\",\"authors\":\"Shengxiang Wu,&nbsp;Matthew Sheldon\",\"doi\":\"10.1146/annurev-physchem-062422-014911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Localized surface plasmon resonances (LSPRs) in metallic nanostructures result in subwavelength optical confinement that enhances light-matter interactions, for example, aiding the sensitivity of surface spectroscopies. The dissipation of surface plasmons as electronic and vibrational excitations sets the limit for field confinement but also provides opportunities for photochemistry, photocatalysis, and photothermal heating. Optimization for either goal requires a deeper understanding of this photothermalization process. In this review, we focus on recent insights into the physics and dynamics governing photothermalization of LSPRs in metallic nanostructures, emphasizing comparisons between the steady-state behavior and ultrafast time-resolved studies. The differences between these regimes inform how to best optimize plasmonic systems for applications under relatively low-intensity, continuous illumination (e.g., sunlight).</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-062422-014911\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-062422-014911","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

金属纳米结构中的局部表面等离子体共振(LSPRs)导致亚波长光约束,从而增强光与物质的相互作用,例如,有助于表面光谱的灵敏度。表面等离子体作为电子和振动激励的耗散为场约束设定了限制,但也为光化学、光催化和光热加热提供了机会。任何一个目标的优化都需要对这个光热化过程有更深入的了解。在这篇综述中,我们重点介绍了金属纳米结构中LSPRs光热化的物理和动力学的最新见解,强调了稳态行为和超快时间分辨研究之间的比较。这些机制之间的差异告诉我们如何优化等离子体系统在相对低强度、连续照明(如阳光)下的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms of Photothermalization in Plasmonic Nanostructures: Insights into the Steady State.

Localized surface plasmon resonances (LSPRs) in metallic nanostructures result in subwavelength optical confinement that enhances light-matter interactions, for example, aiding the sensitivity of surface spectroscopies. The dissipation of surface plasmons as electronic and vibrational excitations sets the limit for field confinement but also provides opportunities for photochemistry, photocatalysis, and photothermal heating. Optimization for either goal requires a deeper understanding of this photothermalization process. In this review, we focus on recent insights into the physics and dynamics governing photothermalization of LSPRs in metallic nanostructures, emphasizing comparisons between the steady-state behavior and ultrafast time-resolved studies. The differences between these regimes inform how to best optimize plasmonic systems for applications under relatively low-intensity, continuous illumination (e.g., sunlight).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信