Xiaolong Yuan, Yunqing Li, Ting Luo, Wei Bi, Jiaojun Yu, Yi Wang
{"title":"线虫黄原菌基因组分析及基于全基因组的聚酮合成酶基因挖掘。","authors":"Xiaolong Yuan, Yunqing Li, Ting Luo, Wei Bi, Jiaojun Yu, Yi Wang","doi":"10.1080/12298093.2023.2175428","DOIUrl":null,"url":null,"abstract":"<p><p><i>Xanthoria elegans</i> is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the <i>de novo</i> sequencing and assembly of <i>X. elegans</i> genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of <i>X. elegans</i>, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from <i>X. elegans</i> were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from <i>X. elegans</i> build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from <i>X. elegans</i> represent an unexploited source of novel polyketide and utilization of lichen gene resources.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/8c/TMYB_51_2175428.PMC9946308.pdf","citationCount":"0","resultStr":"{\"title\":\"Genomic Analysis of the <i>Xanthoria elegans</i> and Polyketide Synthase Gene Mining Based on the Whole Genome.\",\"authors\":\"Xiaolong Yuan, Yunqing Li, Ting Luo, Wei Bi, Jiaojun Yu, Yi Wang\",\"doi\":\"10.1080/12298093.2023.2175428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Xanthoria elegans</i> is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the <i>de novo</i> sequencing and assembly of <i>X. elegans</i> genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of <i>X. elegans</i>, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from <i>X. elegans</i> were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from <i>X. elegans</i> build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from <i>X. elegans</i> represent an unexploited source of novel polyketide and utilization of lichen gene resources.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/8c/TMYB_51_2175428.PMC9946308.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/12298093.2023.2175428\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/12298093.2023.2175428","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome.
Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.