Robert Dolan, Arinola O Lampejo, Jorge Santini-González, Nicholas A Hodges, Edward A Phelps, Walter L Murfee
{"title":"一种研究移植胰岛血管形成的体外新方法。","authors":"Robert Dolan, Arinola O Lampejo, Jorge Santini-González, Nicholas A Hodges, Edward A Phelps, Walter L Murfee","doi":"10.1159/000523925","DOIUrl":null,"url":null,"abstract":"<p><p>Revascularization of transplanted pancreatic islets is critical for survival and treatment of type 1 diabetes. Questions concerning how islets influence local microvascular networks and how networks form connections with islets remain understudied and motivate the need for new models that mimic the complexity of real tissue. Recently, our laboratory established the rat mesentery culture model as a tool to investigate cell dynamics involved in microvascular growth. An advantage is the ability to observe blood vessels, lymphatics, and immune cells. The objective of this study was to establish the rat mesentery tissue culture model as a useful tool to investigate islet tissue integration. DiI-labeled islets were seeded onto adult rat mesentery tissues and cultured for up to 3 days. Live lectin labeling enabled time-lapse observation of vessel growth. During culture, DiI-positive islets remained intact. Radial lectin-positive capillary sprouts with DiI labeling were observed to form from islets and connect to host networks. Lectin-positive vessels from host networks were also seen growing toward islets. PECAM and NG2 labeling confirmed that vessels sprouting from islets contained endothelial cells and pericytes. Our results introduce the rat mesentery culture model as a platform for investigating dynamics associated with the initial revascularization of transplanted islets.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 4","pages":"229-238"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308658/pdf/nihms-1788808.pdf","citationCount":"0","resultStr":"{\"title\":\"A Novel ex vivo Method for Investigating Vascularization of Transplanted Islets.\",\"authors\":\"Robert Dolan, Arinola O Lampejo, Jorge Santini-González, Nicholas A Hodges, Edward A Phelps, Walter L Murfee\",\"doi\":\"10.1159/000523925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Revascularization of transplanted pancreatic islets is critical for survival and treatment of type 1 diabetes. Questions concerning how islets influence local microvascular networks and how networks form connections with islets remain understudied and motivate the need for new models that mimic the complexity of real tissue. Recently, our laboratory established the rat mesentery culture model as a tool to investigate cell dynamics involved in microvascular growth. An advantage is the ability to observe blood vessels, lymphatics, and immune cells. The objective of this study was to establish the rat mesentery tissue culture model as a useful tool to investigate islet tissue integration. DiI-labeled islets were seeded onto adult rat mesentery tissues and cultured for up to 3 days. Live lectin labeling enabled time-lapse observation of vessel growth. During culture, DiI-positive islets remained intact. Radial lectin-positive capillary sprouts with DiI labeling were observed to form from islets and connect to host networks. Lectin-positive vessels from host networks were also seen growing toward islets. PECAM and NG2 labeling confirmed that vessels sprouting from islets contained endothelial cells and pericytes. Our results introduce the rat mesentery culture model as a platform for investigating dynamics associated with the initial revascularization of transplanted islets.</p>\",\"PeriodicalId\":17530,\"journal\":{\"name\":\"Journal of Vascular Research\",\"volume\":\"59 4\",\"pages\":\"229-238\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308658/pdf/nihms-1788808.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000523925\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000523925","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
A Novel ex vivo Method for Investigating Vascularization of Transplanted Islets.
Revascularization of transplanted pancreatic islets is critical for survival and treatment of type 1 diabetes. Questions concerning how islets influence local microvascular networks and how networks form connections with islets remain understudied and motivate the need for new models that mimic the complexity of real tissue. Recently, our laboratory established the rat mesentery culture model as a tool to investigate cell dynamics involved in microvascular growth. An advantage is the ability to observe blood vessels, lymphatics, and immune cells. The objective of this study was to establish the rat mesentery tissue culture model as a useful tool to investigate islet tissue integration. DiI-labeled islets were seeded onto adult rat mesentery tissues and cultured for up to 3 days. Live lectin labeling enabled time-lapse observation of vessel growth. During culture, DiI-positive islets remained intact. Radial lectin-positive capillary sprouts with DiI labeling were observed to form from islets and connect to host networks. Lectin-positive vessels from host networks were also seen growing toward islets. PECAM and NG2 labeling confirmed that vessels sprouting from islets contained endothelial cells and pericytes. Our results introduce the rat mesentery culture model as a platform for investigating dynamics associated with the initial revascularization of transplanted islets.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.