Priyanka Banerjee, Elizabeth A Olmsted-Davis, Anita Deswal, Minh Th Nguyen, Efstratios Koutroumpakis, Nicholas L Palaskas, Steven H Lin, Sivareddy Kotla, Cielito Reyes-Gibby, Sai-Ching J Yeung, Syed Wamique Yusuf, Momoko Yoshimoto, Michihiro Kobayashi, Bing Yu, Keri Schadler, Joerg Herrmann, John P Cooke, Abhishek Jain, Eduardo Chini, Nhat-Tu Le, Jun-Ichi Abe
{"title":"癌症治疗诱导的NAD+耗竭在早衰和晚期心血管并发症中的作用。","authors":"Priyanka Banerjee, Elizabeth A Olmsted-Davis, Anita Deswal, Minh Th Nguyen, Efstratios Koutroumpakis, Nicholas L Palaskas, Steven H Lin, Sivareddy Kotla, Cielito Reyes-Gibby, Sai-Ching J Yeung, Syed Wamique Yusuf, Momoko Yoshimoto, Michihiro Kobayashi, Bing Yu, Keri Schadler, Joerg Herrmann, John P Cooke, Abhishek Jain, Eduardo Chini, Nhat-Tu Le, Jun-Ichi Abe","doi":"10.20517/jca.2022.13","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD<sup>+</sup> depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.</p>","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":"2 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258520/pdf/","citationCount":"5","resultStr":"{\"title\":\"Cancer treatment-induced NAD+ depletion in premature senescence and late cardiovascular complications.\",\"authors\":\"Priyanka Banerjee, Elizabeth A Olmsted-Davis, Anita Deswal, Minh Th Nguyen, Efstratios Koutroumpakis, Nicholas L Palaskas, Steven H Lin, Sivareddy Kotla, Cielito Reyes-Gibby, Sai-Ching J Yeung, Syed Wamique Yusuf, Momoko Yoshimoto, Michihiro Kobayashi, Bing Yu, Keri Schadler, Joerg Herrmann, John P Cooke, Abhishek Jain, Eduardo Chini, Nhat-Tu Le, Jun-Ichi Abe\",\"doi\":\"10.20517/jca.2022.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD<sup>+</sup> depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.</p>\",\"PeriodicalId\":75051,\"journal\":{\"name\":\"The journal of cardiovascular aging\",\"volume\":\"2 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258520/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of cardiovascular aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jca.2022.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of cardiovascular aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jca.2022.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cancer treatment-induced NAD+ depletion in premature senescence and late cardiovascular complications.
Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD+ depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.