{"title":"维甲酸在癌症中的代谢:维甲酸代谢阻断疗法的潜在可行性。","authors":"Makoto Osanai, Akira Takasawa, Kumi Takasawa, Daisuke Kyuno, Yusuke Ono, Kazufumi Magara","doi":"10.1007/s00795-022-00345-6","DOIUrl":null,"url":null,"abstract":"<p><p>Retinoic acid (RA) is an active metabolite of vitamin A, which is an essential signaling molecule involved in cell fate decisions, such as differentiation, proliferation, and apoptosis, in a wide variety of cell types. Accumulated data have demonstrated that expression of RA-metabolizing enzymes, CYP26A1, B1, and C1 (cytochrome P450, family 26A1, B1, and C1, respectively), protects cells and tissues from exposure to RA through restriction of RA access to transcriptional machinery by converting RA to rapidly excreted derivatives. CYP26 enzymes play similar but separate roles in limiting the consequences of fluctuations in nutritional vitamin A. Recently, we found that RA depletion caused by expression of CYP26A1 promotes malignant behaviors of tumor cells derived from various tissues, implicating CYP26A1 as a candidate oncogene. We also showed that the expression levels of CYP26 enzymes are elevated in various types of cancer. We have provided evidence for oncogenic and cell survival properties of CYP26 enzymes, indicating that these molecules are possible therapeutic targets for CYP26-expressing malignancies.</p>","PeriodicalId":18338,"journal":{"name":"Medical Molecular Morphology","volume":"56 1","pages":"1-10"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Retinoic acid metabolism in cancer: potential feasibility of retinoic acid metabolism blocking therapy.\",\"authors\":\"Makoto Osanai, Akira Takasawa, Kumi Takasawa, Daisuke Kyuno, Yusuke Ono, Kazufumi Magara\",\"doi\":\"10.1007/s00795-022-00345-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinoic acid (RA) is an active metabolite of vitamin A, which is an essential signaling molecule involved in cell fate decisions, such as differentiation, proliferation, and apoptosis, in a wide variety of cell types. Accumulated data have demonstrated that expression of RA-metabolizing enzymes, CYP26A1, B1, and C1 (cytochrome P450, family 26A1, B1, and C1, respectively), protects cells and tissues from exposure to RA through restriction of RA access to transcriptional machinery by converting RA to rapidly excreted derivatives. CYP26 enzymes play similar but separate roles in limiting the consequences of fluctuations in nutritional vitamin A. Recently, we found that RA depletion caused by expression of CYP26A1 promotes malignant behaviors of tumor cells derived from various tissues, implicating CYP26A1 as a candidate oncogene. We also showed that the expression levels of CYP26 enzymes are elevated in various types of cancer. We have provided evidence for oncogenic and cell survival properties of CYP26 enzymes, indicating that these molecules are possible therapeutic targets for CYP26-expressing malignancies.</p>\",\"PeriodicalId\":18338,\"journal\":{\"name\":\"Medical Molecular Morphology\",\"volume\":\"56 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Molecular Morphology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00795-022-00345-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Molecular Morphology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00795-022-00345-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
Retinoic acid metabolism in cancer: potential feasibility of retinoic acid metabolism blocking therapy.
Retinoic acid (RA) is an active metabolite of vitamin A, which is an essential signaling molecule involved in cell fate decisions, such as differentiation, proliferation, and apoptosis, in a wide variety of cell types. Accumulated data have demonstrated that expression of RA-metabolizing enzymes, CYP26A1, B1, and C1 (cytochrome P450, family 26A1, B1, and C1, respectively), protects cells and tissues from exposure to RA through restriction of RA access to transcriptional machinery by converting RA to rapidly excreted derivatives. CYP26 enzymes play similar but separate roles in limiting the consequences of fluctuations in nutritional vitamin A. Recently, we found that RA depletion caused by expression of CYP26A1 promotes malignant behaviors of tumor cells derived from various tissues, implicating CYP26A1 as a candidate oncogene. We also showed that the expression levels of CYP26 enzymes are elevated in various types of cancer. We have provided evidence for oncogenic and cell survival properties of CYP26 enzymes, indicating that these molecules are possible therapeutic targets for CYP26-expressing malignancies.
期刊介绍:
Medical Molecular Morphology is an international forum for researchers in both basic and clinical medicine to present and discuss new research on the structural mechanisms and the processes of health and disease at the molecular level. The structures of molecules, organelles, cells, tissues, and organs determine their normal function. Disease is thus best understood in terms of structural changes in these different levels of biological organization, especially in molecules and molecular interactions as well as the cellular localization of chemical components. Medical Molecular Morphology welcomes articles on basic or clinical research in the fields of cell biology, molecular biology, and medical, veterinary, and dental sciences using techniques for structural research such as electron microscopy, confocal laser scanning microscopy, enzyme histochemistry, immunohistochemistry, radioautography, X-ray microanalysis, and in situ hybridization.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.