{"title":"DNA甲基化在2型糖尿病发病中的作用。","authors":"Suneesh Kaimala, Suraiya Anjum Ansari, Bright Starling Emerald","doi":"10.1016/bs.vh.2022.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes (T2D) is a metabolic disease characterized by the development of β-cell dysfunction with hepatic, muscular and adipose tissue insulin resistance. Although the molecular mechanisms leading to its development are not entirely known, investigations of its causes reveal a multifactorial contribution to its development and progression in most cases. In addition, regulatory interactions mediated by epigenetic modifications such as DNA methylation, histone tail modifications and regulatory RNAs have been found to play a significant role in the etiology of T2D. In this chapter, we discuss the role of DNA methylation and its dynamics in the development of the pathological features of T2D.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"122 ","pages":"147-169"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DNA methylation in the pathogenesis of type 2 diabetes.\",\"authors\":\"Suneesh Kaimala, Suraiya Anjum Ansari, Bright Starling Emerald\",\"doi\":\"10.1016/bs.vh.2022.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes (T2D) is a metabolic disease characterized by the development of β-cell dysfunction with hepatic, muscular and adipose tissue insulin resistance. Although the molecular mechanisms leading to its development are not entirely known, investigations of its causes reveal a multifactorial contribution to its development and progression in most cases. In addition, regulatory interactions mediated by epigenetic modifications such as DNA methylation, histone tail modifications and regulatory RNAs have been found to play a significant role in the etiology of T2D. In this chapter, we discuss the role of DNA methylation and its dynamics in the development of the pathological features of T2D.</p>\",\"PeriodicalId\":51209,\"journal\":{\"name\":\"Vitamins and Hormones\",\"volume\":\"122 \",\"pages\":\"147-169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vitamins and Hormones\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.vh.2022.11.002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamins and Hormones","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.vh.2022.11.002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
DNA methylation in the pathogenesis of type 2 diabetes.
Type 2 diabetes (T2D) is a metabolic disease characterized by the development of β-cell dysfunction with hepatic, muscular and adipose tissue insulin resistance. Although the molecular mechanisms leading to its development are not entirely known, investigations of its causes reveal a multifactorial contribution to its development and progression in most cases. In addition, regulatory interactions mediated by epigenetic modifications such as DNA methylation, histone tail modifications and regulatory RNAs have been found to play a significant role in the etiology of T2D. In this chapter, we discuss the role of DNA methylation and its dynamics in the development of the pathological features of T2D.
期刊介绍:
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. In the early days of the serial, the subjects of vitamins and hormones were quite distinct. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms. Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines.