Anastasia Geladaris, Silke Häusser-Kinzel, Roxanne Pretzsch, Nitzan Nissimov, Klaus Lehmann-Horn, Darius Häusler, Martin S. Weber
{"title":"提供IL-10的B细胞在中枢神经系统自身免疫中控制巨噬细胞和小胶质细胞的促炎活性","authors":"Anastasia Geladaris, Silke Häusser-Kinzel, Roxanne Pretzsch, Nitzan Nissimov, Klaus Lehmann-Horn, Darius Häusler, Martin S. Weber","doi":"10.1007/s00401-023-02552-6","DOIUrl":null,"url":null,"abstract":"<div><p>B cells contribute to chronic inflammatory conditions as source of antibody-secreting plasma cells and as antigen-presenting cells activating T cells, making anti-CD20-mediated B cell depletion a widely used therapeutic option. B cells or B cell subsets may, however, exert regulatory effects, while to date, the immunological and/or clinical impact of these observations remained unclear. We found that in multiple sclerosis (MS) patients, B cells contain regulatory features and that their removal enhanced activity of monocytes. Using a co-culture system, we identified B cell-provided interleukin (IL)-10 as key factor in controlling pro-inflammatory activity of peripheral myeloid cells as well as microglia. Depleting B cells via anti-CD20 in a mouse model of MS unleashed the activity of myeloid cells and microglia and accelerated disease severity; in contrast, adoptive transfer of IL-10-providing B cells restored in vivo control of central nervous system (CNS) macrophages and microglia and reversed clinical exacerbation. These findings suggest that B cells exert meaningful regulatory properties, which should be considered when designing novel B cell-directed agents.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"145 4","pages":"461 - 477"},"PeriodicalIF":9.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00401-023-02552-6.pdf","citationCount":"1","resultStr":"{\"title\":\"IL-10-providing B cells govern pro-inflammatory activity of macrophages and microglia in CNS autoimmunity\",\"authors\":\"Anastasia Geladaris, Silke Häusser-Kinzel, Roxanne Pretzsch, Nitzan Nissimov, Klaus Lehmann-Horn, Darius Häusler, Martin S. Weber\",\"doi\":\"10.1007/s00401-023-02552-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>B cells contribute to chronic inflammatory conditions as source of antibody-secreting plasma cells and as antigen-presenting cells activating T cells, making anti-CD20-mediated B cell depletion a widely used therapeutic option. B cells or B cell subsets may, however, exert regulatory effects, while to date, the immunological and/or clinical impact of these observations remained unclear. We found that in multiple sclerosis (MS) patients, B cells contain regulatory features and that their removal enhanced activity of monocytes. Using a co-culture system, we identified B cell-provided interleukin (IL)-10 as key factor in controlling pro-inflammatory activity of peripheral myeloid cells as well as microglia. Depleting B cells via anti-CD20 in a mouse model of MS unleashed the activity of myeloid cells and microglia and accelerated disease severity; in contrast, adoptive transfer of IL-10-providing B cells restored in vivo control of central nervous system (CNS) macrophages and microglia and reversed clinical exacerbation. These findings suggest that B cells exert meaningful regulatory properties, which should be considered when designing novel B cell-directed agents.</p></div>\",\"PeriodicalId\":7012,\"journal\":{\"name\":\"Acta Neuropathologica\",\"volume\":\"145 4\",\"pages\":\"461 - 477\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00401-023-02552-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00401-023-02552-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-023-02552-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
IL-10-providing B cells govern pro-inflammatory activity of macrophages and microglia in CNS autoimmunity
B cells contribute to chronic inflammatory conditions as source of antibody-secreting plasma cells and as antigen-presenting cells activating T cells, making anti-CD20-mediated B cell depletion a widely used therapeutic option. B cells or B cell subsets may, however, exert regulatory effects, while to date, the immunological and/or clinical impact of these observations remained unclear. We found that in multiple sclerosis (MS) patients, B cells contain regulatory features and that their removal enhanced activity of monocytes. Using a co-culture system, we identified B cell-provided interleukin (IL)-10 as key factor in controlling pro-inflammatory activity of peripheral myeloid cells as well as microglia. Depleting B cells via anti-CD20 in a mouse model of MS unleashed the activity of myeloid cells and microglia and accelerated disease severity; in contrast, adoptive transfer of IL-10-providing B cells restored in vivo control of central nervous system (CNS) macrophages and microglia and reversed clinical exacerbation. These findings suggest that B cells exert meaningful regulatory properties, which should be considered when designing novel B cell-directed agents.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.