Wu Xue, Xiaoke Zhang, Kwun Chuen Gary Chan, Raymond K W Wong
{"title":"基于 RKHS 的协变量平衡,用于生存因果效应估计。","authors":"Wu Xue, Xiaoke Zhang, Kwun Chuen Gary Chan, Raymond K W Wong","doi":"10.1007/s10985-023-09590-y","DOIUrl":null,"url":null,"abstract":"<p><p>Survival causal effect estimation based on right-censored data is of key interest in both survival analysis and causal inference. Propensity score weighting is one of the most popular methods in the literature. However, since it involves the inverse of propensity score estimates, its practical performance may be very unstable, especially when the covariate overlap is limited between treatment and control groups. To address this problem, a covariate balancing method is developed in this paper to estimate the counterfactual survival function. The proposed method is nonparametric and balances covariates in a reproducing kernel Hilbert space (RKHS) via weights that are counterparts of inverse propensity scores. The uniform rate of convergence for the proposed estimator is shown to be the same as that for the classical Kaplan-Meier estimator. The appealing practical performance of the proposed method is demonstrated by a simulation study as well as two real data applications to study the causal effect of smoking on survival time of stroke patients and that of endotoxin on survival time for female patients with lung cancer respectively.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RKHS-based covariate balancing for survival causal effect estimation.\",\"authors\":\"Wu Xue, Xiaoke Zhang, Kwun Chuen Gary Chan, Raymond K W Wong\",\"doi\":\"10.1007/s10985-023-09590-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Survival causal effect estimation based on right-censored data is of key interest in both survival analysis and causal inference. Propensity score weighting is one of the most popular methods in the literature. However, since it involves the inverse of propensity score estimates, its practical performance may be very unstable, especially when the covariate overlap is limited between treatment and control groups. To address this problem, a covariate balancing method is developed in this paper to estimate the counterfactual survival function. The proposed method is nonparametric and balances covariates in a reproducing kernel Hilbert space (RKHS) via weights that are counterparts of inverse propensity scores. The uniform rate of convergence for the proposed estimator is shown to be the same as that for the classical Kaplan-Meier estimator. The appealing practical performance of the proposed method is demonstrated by a simulation study as well as two real data applications to study the causal effect of smoking on survival time of stroke patients and that of endotoxin on survival time for female patients with lung cancer respectively.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-023-09590-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09590-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
RKHS-based covariate balancing for survival causal effect estimation.
Survival causal effect estimation based on right-censored data is of key interest in both survival analysis and causal inference. Propensity score weighting is one of the most popular methods in the literature. However, since it involves the inverse of propensity score estimates, its practical performance may be very unstable, especially when the covariate overlap is limited between treatment and control groups. To address this problem, a covariate balancing method is developed in this paper to estimate the counterfactual survival function. The proposed method is nonparametric and balances covariates in a reproducing kernel Hilbert space (RKHS) via weights that are counterparts of inverse propensity scores. The uniform rate of convergence for the proposed estimator is shown to be the same as that for the classical Kaplan-Meier estimator. The appealing practical performance of the proposed method is demonstrated by a simulation study as well as two real data applications to study the causal effect of smoking on survival time of stroke patients and that of endotoxin on survival time for female patients with lung cancer respectively.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.