Ibrahim M Ibrahim, Yuliya P Fedonenko, Elena N Sigida, Maxim S Kokoulin, Vyacheslav S Grinev, Ivan G Mokrushin, Gennady L Burygin, Andrey M Zakharevich, Alexander A Shirokov, Svetlana A Konnova
{"title":"中等嗜盐细菌salexigens嗜盐杆菌3EQS1产胞外多糖的结构表征和理化性质。","authors":"Ibrahim M Ibrahim, Yuliya P Fedonenko, Elena N Sigida, Maxim S Kokoulin, Vyacheslav S Grinev, Ivan G Mokrushin, Gennady L Burygin, Andrey M Zakharevich, Alexander A Shirokov, Svetlana A Konnova","doi":"10.1007/s00792-023-01289-0","DOIUrl":null,"url":null,"abstract":"<p><p>A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L<sup>-1</sup>) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9 × 10<sup>6</sup> Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear β-D-(2 → 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 µg mL<sup>-1</sup>. The EPS had high emulsifying activity (E<sub>24</sub>, %) against kerosene (31.2 ± 0.4%), sunflower oil (76.9 ± 1.3%), and crude oil (98.9 ± 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of C. salexigens 3EQS1 may be useful in various biotechnological processes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural characterization and physicochemical properties of the exopolysaccharide produced by the moderately halophilic bacterium Chromohalobacter salexigens, strain 3EQS1.\",\"authors\":\"Ibrahim M Ibrahim, Yuliya P Fedonenko, Elena N Sigida, Maxim S Kokoulin, Vyacheslav S Grinev, Ivan G Mokrushin, Gennady L Burygin, Andrey M Zakharevich, Alexander A Shirokov, Svetlana A Konnova\",\"doi\":\"10.1007/s00792-023-01289-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L<sup>-1</sup>) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9 × 10<sup>6</sup> Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear β-D-(2 → 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 µg mL<sup>-1</sup>. The EPS had high emulsifying activity (E<sub>24</sub>, %) against kerosene (31.2 ± 0.4%), sunflower oil (76.9 ± 1.3%), and crude oil (98.9 ± 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of C. salexigens 3EQS1 may be useful in various biotechnological processes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-023-01289-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01289-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Structural characterization and physicochemical properties of the exopolysaccharide produced by the moderately halophilic bacterium Chromohalobacter salexigens, strain 3EQS1.
A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L-1) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9 × 106 Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear β-D-(2 → 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 µg mL-1. The EPS had high emulsifying activity (E24, %) against kerosene (31.2 ± 0.4%), sunflower oil (76.9 ± 1.3%), and crude oil (98.9 ± 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of C. salexigens 3EQS1 may be useful in various biotechnological processes.